Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Chương 8 Hình đồng dạng Giải mục 2 trang 74, 75 Toán 8 tập 2– Chân trời sáng tạo: Trong Hình 6, tam giác nào đồng dạng với tam giác \(DEF\)?...

Giải mục 2 trang 74, 75 Toán 8 tập 2– Chân trời sáng tạo: Trong Hình 6, tam giác nào đồng dạng với tam giác \(DEF\)?...

Hướng dẫn giải HĐ2, TH2, VD2 mục 2 trang 74, 75 SGK Toán 8 tập 2– Chân trời sáng tạo Bài 3. Các trường hợp đồng dạng của hai tam giác vuông. Cho hai tam giác vuông...Trong Hình 6, tam giác nào đồng dạng với tam giác \(DEF\)?

Câu hỏi:

Hoạt động2

Cho hai tam giác vuông \(ABC\) và \(DEF\) có các kích thước như Hình 4.

a) Hãy tính độ dài cạnh \(AC\) và \(DF\).

b) So sánh các tỉ số \(\frac{{AB}}{{DE}};\frac{{AC}}{{DF}}\) và \(\frac{{BC}}{{EF}}\).

c) Dự đoán sự đồng dạng của hai tam giác\(ABC\) và \(DEF\).

image

Hướng dẫn giải :

- Sử dụng định lí Py – ta – go.

- Chứng minh tam giác đồng dạng theo trường hợp cạnh – cạnh – cạnh

Lời giải chi tiết :

a) Xét tam giác \(ABC\) vuông tại \(A\) ta có:

\(A{B^2} + A{C^2} = B{C^2}\) (định lí Py – ta – go)

\( \Leftrightarrow {6^2} + A{C^2} = {10^2} \Leftrightarrow A{C^2} = {10^2} - {6^2} = 64 \Leftrightarrow AC = 8\).

Xét tam giác \(DEF\) vuông tại \(D\) ta có:

\(D{E^2} + D{F^2} = E{F^2}\) (định lí Py – ta – go)

\( \Leftrightarrow {9^2} + D{F^2} = {15^2} \Leftrightarrow D{F^2} = {15^2} - {9^2} = 144 \Leftrightarrow DF = 12\).

b) Tỉ số:

\(\frac{{AB}}{{DE}} = \frac{6}{9} = \frac{2}{3};\frac{{AC}}{{DF}} = \frac{8}{{12}} = \frac{2}{3}\); \(\frac{{BC}}{{EF}} = \frac{{10}}{{15}} = \frac{2}{3}\).

Do đó, \(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}} = \frac{2}{3}\).

c) Xét tam giác\(ABC\) và tam giác\(DEF\) có:

\(\frac{{AB}}{{DE}} = \frac{{AC}}{{DF}} = \frac{{BC}}{{EF}} = \frac{2}{3}\) (chứng minh trên)

Do đó, \(\Delta ABC\backsim\Delta DEF\) (c.c.c)


Câu hỏi:

Thực hành2

Trong Hình 6, tam giác nào đồng dạng với tam giác \(DEF\)?

image

Hướng dẫn giải :

Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này tỉ lệ với cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Lời giải chi tiết :

Tỉ số:

\(\frac{{DE}}{{AC}} = \frac{6}{8} = \frac{3}{4};\frac{{EF}}{{BC}} = \frac{{15}}{{20}} = \frac{3}{4}\).

Xét tam giác\(DEF\) và tam giác\(ABC\) có:

\(\frac{{DE}}{{AC}} = \frac{{EF}}{{BC}} = \frac{3}{4}\) (chứng minh trên)

Do đó, \(\Delta DEF\backsim\Delta ABC\).

Tỉ số:

\(\frac{{DE}}{{MN}} = \frac{6}{3} = 2;\frac{{EF}}{{NP}} = \frac{{15}}{6} = \frac{5}{2}\).

Vì \(\frac{{DE}}{{MN}} \ne \frac{{EF}}{{NP}}\) nên hai tam giác \(DEF\) và \(MNP\) không đồng dạng với nhau.

Tỉ số:

\(\frac{{DE}}{{RS}} = \frac{6}{4} = \frac{3}{2};\frac{{EF}}{{ST}} = \frac{{15}}{{12}} = \frac{5}{4}\).

Vì \(\frac{{DE}}{{RS}} \ne \frac{{EF}}{{ST}}\) nên hai tam giác \(DEF\) và \(SRT\) không đồng dạng với nhau.


Câu hỏi:

Vận dụng2

Trong Hình 7, biết \(\Delta MNP\backsim\Delta ABC\) với tỉ số đồng dạng \(k = \frac{{MN}}{{AB}}\), hai đường cao tương ứng là \(MK\) và \(AH\).

a) Chứng minh rằng \(\Delta MNK\backsim\Delta ABH\)và \(\frac{{MK}}{{AH}} = k\).

b) Gọi \({S_1}\) là diện tích tam giác \(MNP\) và \({S_2}\) là diện tích tam giác \(ABC\). Chứng minh rằng \(\frac{{{S_1}}}{{{S_2}}} = {k^2}\).

image

Hướng dẫn giải :

- Nếu một tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

- Diện tích tam giác vuông bằng một nửa tích hai cạnh góc vuông.

Lời giải chi tiết :

a) Vì tam giác \(\Delta MNP\backsim\Delta ABC\) nên \(\widehat B = \widehat N\) (hai góc tương ứng).

Vì \(MK\) là đường cao nên \(\widehat {MKN} = 90^\circ \);Vì \(AH\) là đường cao nên \(\widehat {AHB} = 90^\circ \)

Xét \(\Delta MNK\) và \(\Delta ABH\) có:

\(\widehat B = \widehat N\) (chứng minh trên)

\(\widehat {MKN} = \widehat {AHB} = 90^\circ \)

Do đó, \(\Delta MNK\backsim\Delta ABH\) (g.g)

Vì \(\Delta MNK\backsim\Delta ABH\) nên ta có: \(\frac{{MN}}{{AB}} = \frac{{NK}}{{BH}} = \frac{{MK}}{{AH}} = k \Rightarrow \frac{{MK}}{{AH}} = k\).

b) Vì \(\Delta MNP\backsim\Delta ABC\) nên \(\frac{{MN}}{{AB}} = \frac{{NP}}{{BC}} = \frac{{MP}}{{AC}} = k\)

\( \Rightarrow \frac{{NP}}{{BC}} = k \Leftrightarrow NP = kBC\)

Vì \(\frac{{MK}}{{AH}} = k \Rightarrow MK = kAH\)

Diện tích tam giác \(MNP\) là:

\({S_1} = \frac{1}{2}.MK.NP\) (đvdt)

Diện tích tam giác \(ABC\) là:

\({S_2} = \frac{1}{2}.AH.BC\) (đvdt)

Ta có: \(\frac{{{S_1}}}{{{S_2}}} = \frac{{\frac{1}{2}.MK.NP}}{{\frac{1}{2}.AH.BC}} = \frac{{kAH.kBC}}{{AH.BC}} = {k^2}\) (điều phải chứng minh)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Chân trời sáng tạo

- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.

- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK