a) Cho đoạn thẳng \(AB\) và điểm \(O\). Kẻ các tia \(OA,OB\). Trên tia \(OA,OB\) lần lượt lấy các điểm \(A’,B’\) sao cho \(OA’ = 3OA,OB’ = 3OB\) (ình 1a).
i) \(A’B’\) có song song với \(AB\) không.
ii) Tính tỉ số \(\frac{{A’B’}}{{AB}}\).
b) Cho tam giác \(ABC\) và điểm \(O\). Kẻ các tia \(OA,OB,OC\). Trên tia \(OA,OB,OC\) lần lượt lấy các điểm \(A’,B’,C’\) sao cho \(OA’ = 3OA,OB’ = 3OB,OC’ = 3OC\) (Hình 1b).
i) Tính và so sánh các tỉ số \(\frac{{A’B’}}{{AB}},\frac{{A’C’}}{{AC}},\frac{{B’C’}}{{BC}}\).
ii) Chứng minh tam giác \(A’B’C’\) đồng dạng với tam giác \(ABC\).
- Sử dụng định lí Thales đảo;
- Sử dụng hệ quả của định lí Thales;
- Sử dụng trường hợp đồng dạng thứ nhất của tam giác (c.c.c)
a)
i) Vì \(OA’ = 3OA \Rightarrow \frac{{OA}}{{OA’}} = \frac{1}{3}\);\(OB’ = 3OB \Rightarrow \frac{{OB}}{{OB’}} = \frac{1}{3}\).
Xét tam giác \(OA’B’\) có:
\(\frac{{OA}}{{OA’}} = \frac{{OB}}{{OB’}} = \frac{1}{3}\)
Do đó, \(A’B’//AB\) (định lí Thales đảo)
ii) Vì \(A’B’//AB \Rightarrow \frac{{OA}}{{OA’}} = \frac{{OB}}{{OB’}} = \frac{{AB}}{{A’B’}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A’B’}}{{AB}} = \frac{3}{1} = 3\).
b)
i)
- Vì \(OA’ = 3OA \Rightarrow \frac{{OA}}{{OA’}} = \frac{1}{3}\);\(OB’ = 3OB \Rightarrow \frac{{OB}}{{OB’}} = \frac{1}{3}\).
Xét tam giác \(OA’B’\) có:
\(\frac{{OA}}{{OA’}} = \frac{{OB}}{{OB’}} = \frac{1}{3}\)
Do đó, \(A’B’//AB\) (định lí Thales đảo)
Vì \(A’B’//AB \Rightarrow \frac{{OA}}{{OA’}} = \frac{{OB}}{{OB’}} = \frac{{AB}}{{A’B’}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A’B’}}{{AB}} = \frac{3}{1} = 3\).
- Vì \(OA’ = 3OA \Rightarrow \frac{{OA}}{{OA’}} = \frac{1}{3}\);\(OC’ = 3OC \Rightarrow \frac{{OC}}{{OC’}} = \frac{1}{3}\).
Xét tam giác \(OA’C’\) có:
\(\frac{{OA}}{{OA’}} = \frac{{OC}}{{OC’}} = \frac{1}{3}\)
Do đó, \(A’C’//AC\) (định lí Thales đảo)
Vì \(A’C’//AC \Rightarrow \frac{{OA}}{{OA’}} = \frac{{OC}}{{OC’}} = \frac{{AC}}{{A’C’}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A’C’}}{{AC}} = \frac{3}{1} = 3\).
- Vì \(OB’ = 3OB \Rightarrow \frac{{OB}}{{OB’}} = \frac{1}{3}\);\(OC’ = 3OC \Rightarrow \frac{{OC}}{{OC’}} = \frac{1}{3}\).
Xét tam giác \(OB’C’\) có:
\(\frac{{OB}}{{OB’}} = \frac{{OC}}{{OC’}} = \frac{1}{3}\)
Do đó, \(B’C’//BC\) (định lí Thales đảo)
Vì \(B’C’//BC \Rightarrow \frac{{OB}}{{OB’}} = \frac{{OC}}{{OC’}} = \frac{{BC}}{{B’C’}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{B’C’}}{{BC}} = \frac{3}{1} = 3\).
Do đó, \(\frac{{B’C’}}{{BC}} = \frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}}\)
ii) Xét tam giác \(A’B’C’\) và tam giác \(ABC\) ta có:
\(\frac{{B’C’}}{{BC}} = \frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}}\) (chứng minh trên)
Do đó, tam giác \(A’B’C’\) đồng dạng với tam giác \(ABC\).
Cho tứ giác ABCD và điểm O(O không thuộc các đường thẳng AB, BC, CD, DA). Trên các tia \(OA,OB,OC,OD\) lần lượt lấy các điểm \(A’,B’,C’,D’\) sao cho \(OA’ = \frac {1}{2} OA,OB’ = \frac {1}{2} OB,OC’ = \frac {1}{2} OC,OD’ = \frac {1}{2} OD\) (Hình 2).
Tính và so sánh các tỉ số \(\frac{{A’B’}}{{AB}};\frac{{A’D’}}{{AD}};\frac{{B’C’}}{{BC}};\frac{{C’D’}}{{CD}}\).
- Ta thực hiện các phép tính tỉ số.
- Sử dụng định lí Thales đảo;
- Sử dụng hệ quả của định lí Thales;
- Vì \(OA’ = \frac {1}{2} OA \Rightarrow \frac{{OA’}}{{OA}} = \frac{1}{2}\);\(OB’ = \frac {1}{2} OB \Rightarrow \frac{{OB’}}{{OB}} = \frac{1}{2}\).
Xét tam giác \(OAB\) có:
\(\frac{{OA’}}{{OA}} = \frac{{OB’}}{{OB}} = \frac{1}{2}\)
Do đó, \(A’B’//AB\) (định lí Thales đảo)
Vì \(A’B’//AB \Rightarrow \frac{{OA’}}{{OA}} = \frac{{OB’}}{{OB}} = \frac{{A’B’}}{{AB}} = \frac{1}{2}\) (hệ quả của định lí Thales)
- Vì \(OA’ = \frac {1}{2} OA \Rightarrow \frac{{OA’}}{{OA}} = \frac{1}{2}\);\(OD’ = \frac {1}{2}OD \Rightarrow \frac{{OD’}}{{OD}} = \frac{1}{2}\).
Xét tam giác \(OAD\) có:
\(\frac{{OA’}}{{OA}} = \frac{{OD’}}{{OD}} = \frac{1}{2}\)
Do đó, \(A’D’//AD\) (định lí Thales đảo)
Vì \(A’D’//AD \Rightarrow \frac{{OA’}}{{OA}} = \frac{{OD’}}{{OD}} = \frac{{A’D’}}{{AD}} = \frac{1}{2}\) (hệ quả của định lí Thales)
- Vì \(OB’ = \frac {1}{2} OB \Rightarrow \frac{{OB’}}{{OB}} = \frac{1}{2}\);\(OC’ = \frac {1}{2} OC \Rightarrow \frac{{OC’}}{{OC}} = \frac{1}{2}\).
Xét tam giác \(OBC\) có:
\(\frac{{OB’}}{{OB}} = \frac{{OC’}}{{OC}} = \frac{1}{2}\)
Do đó, \(B’C’//BC\) (định lí Thales đảo)
Vì \(B’C’//BC \Rightarrow \frac{{OB’}}{{OB}} = \frac{{OC’}}{{OC}} = \frac{{B’C’}}{{BC}} = \frac{1}{2}\) (hệ quả của định lí Thales)
- Vì \(OD’ = \frac {1}{2} OD \Rightarrow \frac{{OD’}}{{OD}} = \frac{1}{2}\);\(OC’ = \frac {1}{2}OC \Rightarrow \frac{{OC’}}{{OC}} = \frac{1}{2}\).
Xét tam giác \(ODC\) có:
\(\frac{{OD’}}{{OD}} = \frac{{OC’}}{{OC}} = \frac{1}{2}\)
Do đó, \(D’C’//DC\) (định lí Thales đảo)
Vì \(D’C’//DC \Rightarrow \frac{{OD’}}{{OD}} = \frac{{OC’}}{{OC}} = \frac{{D’C’}}{{DC}} = \frac{1}{2}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{B’C’}}{{BC}} = \frac{{A’B’}}{{AB}} = \frac{{C’D’}}{{CD}} = \frac{{A’D’}}{{AD}}\).
Cho ba tấm ảnh được đặt trên lưới ô vuông như Hình 4. Hãy chỉ ra ba cặp hình, trong mỗi cặp hình này đồng dạng phối cảnh với hình kia và chỉ ra tỉ số đồng dạng tương ứng.
Học sinh quan sát và tiến hành đo độ dài các cạnh của hình.
Nếu các cặp tỉ số của các cạnh tương ứng bằng nhu thì các cặp hình này đồng dạng.
Ta tiến hành đo và nhận thấy hình \(ABCD\) là hình đồng dạng phối cảnh với hình \(A’B’C’D’\) theo tỉ số \(k = \frac {AB}{A’B’} = \frac {BC}{B’C’} = \frac {8}{4} = \frac {6}{3} = 2\).
Ta tiến hành đo và nhận thấy hình \(A’B’C’D’\) là hình đồng dạng phối cảnh với hình \(A”B”C”D”\) theo tỉ số \(k = \frac {A’B’}{A”B”} = \frac {B’C’}{B”C”} = \frac {4}{12} = \frac {3}{9} = \frac {1}{3}\).
=> Hình \(ABCD\) đồng dạng phối cảnh với hình \(A”B”C”D”\) theo tỉ số \( k = 2.\frac {1}{3} = \frac {2}{3} \)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK