Cho tam giác \(ABC\) vuông tại \(A\) có đường cao \(AH\). Kẻ \(HM\) vuông góc với \(AB\) tại \(M\).
a) Chứng minh rằng \(\Delta AMH\backsim\Delta AHB\).
b) Kẻ \(HN\) vuông góc với \(AC\) tại \(N\). Chứng minh rằng \(AM.AB = AN.AC\).
c) Chứng minh rằng \(\Delta ANM\backsim\Delta ABC\).
d) Cho biết \(AB = 9cm,AC = 12cm.\) Tính diện tích tam giác \(AMN\).
- Nếu một tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.
- Diện tích tam giác vuông bằng một nửa tích hai cạnh góc vuông.
a) Xét \(\Delta AMH\) và \(\Delta AHB\) có:
\(\widehat {HAM}\) chung (do \(\widehat {HAM}\) cũng là \(\widehat {HAB}\))
\(\widehat {AMH} = \widehat {AHB} = 90^\circ \) (do \(HM \bot AB\) và \(AH\) là đường cao)
Do đó, \(\Delta AMH\backsim\Delta AHB\) (g.g).
b) Vì \(\Delta AMH\backsim\Delta AHB\) nên \(\frac{{AM}}{{AH}} = \frac{{AH}}{{AB}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra \(AM.AB = A{H^2}\) (1)
- Xét \(\Delta ANH\) và \(\Delta AHC\) có:
\(\widehat {HAN}\) chung (do \(\widehat {HAN}\) cũng là \(\widehat {HAC}\))
\(\widehat {ANH} = \widehat {AHC} = 90^\circ \) (do \(HN \bot AC\) và \(AH\) là đường cao)
Do đó, \(\Delta ANH\backsim\Delta AHC\) (g.g).
Vì \(\Delta ANH\backsim\Delta AHC\) nên \(\frac{{AN}}{{AH}} = \frac{{AH}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Suy ra \(AN.AC = A{H^2}\) (2)
Từ (1) và (2) suy ra, \(AM.AB = AN.AC\)(điều phải chứng minh).
c) Từ câu b ta có:
\(AM.AB = AN.AC \Rightarrow \frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\) (tỉ lệ thức)
Xét \(\Delta ANM\)và \(\Delta ABC\) ta có:
\(\widehat A\) chung
\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\) (chứng minh trên)
Do đó, \(\Delta ANM\backsim\Delta ABC\)(c.g.c)
d) Áp dụng định lí Py- ta – go cho tam giác \(ABC\) vuông tại \(A\) ta có:
\(B{C^2} = A{B^2} + A{C^2} = {9^2} + {12^2} = 225 \Rightarrow BC = 15cm\)
Diện tích tam giác \(ABC\) là: \({S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}AH.BC\)
\( \Rightarrow AH.BC = AB.AC\)
\( \Rightarrow AH = \frac{{AB.AC}}{{BC}} = \frac{{9.12}}{{15}} = 7,2cm\).
Ta có: \(A{H^2} = AM.AB = AM.9 = 7,{2^2} \Rightarrow AM = \frac{{7,{2^2}}}{9} = 5,76cm\)
\(A{H^2} = AN.AC = AN.12 = 7,{2^2} \Rightarrow AN = \frac{{7,{2^2}}}{{12}}4,32cm\).
Diện tích tam giác vuông \(AMN\) là:
\({S_{AMN}} = \frac{1}{2}AM.AN = \frac{1}{2}.5,76.4,32 = 12,4416c{m^2}\).
Vậy diện tích tam giác \(AMN\) là 12,4416cm2.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK