Quan sát Hình 3.
a) So sánh hệ số góc của hai đường thẳng:
\(d:y = 2x + 3\) và \(d’:y = 2x - 2\).
Nêu nhận xét về vị trí giữa hai đường thẳng này.
b) Tìm đường thẳng \(d”\) đi qua gốc tọa độ \(O\) và song song với đường thẳng \(d\).
- Hệ số \(a\) là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\).
- Đường thẳng đi qua gốc tọa độ có dạng \(y = ax\left( {a \ne 0} \right)\).
a) Đường thẳng \(d:y = 2x + 3\) có hệ số góc là \(a = 2\).
Đường thẳng \(d’:y = 2x - 2\) có hệ số góc là \(a’ = 2\).
Hệ số góc của hai đường thẳng \(d\) và \(d’\) bằng nhau.
Từ đồ thị ta thấy, hai đường thẳng \(d\) và \(d’\) song song với nhau.
b) Đường thẳng \(d”\) đi qua gốc tọa độ \(O\) nên có dạng \(y = a”x\).
Từ đồ thị ta thấy, \(d”\) đi qua điểm \(\left( {1;2} \right)\) nên ta có:
\(2 = 1.a” \Rightarrow a” = 2\).
Do đó, đường thẳng \(d”\) là \(y = 2x\).
Quan sát Hình 4.
a) Tìm giao điểm của hai đường thẳng \(d:y = 2x\) và \(d’:y = x\).
b) Nêu nhận xét về hai đường thẳng có hệ số góc khác nhau.
c) Cho đường thẳng \(d’:y = ax + b\) và cho biết \(d”\) cắt \(d\). Hệ số góc \(a\) của đường thẳng \(d”\) có thể nhận giá trị nào?
- Giao điểm của hai đường thẳng là điểm chung mà cả hai đường thẳng đều đi qua.
- Hệ số \(a\) là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\).
- Hai đường thẳng phân biệt song song với nhau nếu hệ số góc của chúng bằng nhau.
a) Đường thẳng \(d:y = 2x\) và \(d’:y = x\) đều có dạng \(y = ax\) nên giao điểm của hai đường thẳng là \(O\left( {0;0} \right)\) (cả hai đường thẳng đều đi qua điểm \(O\left( {0;0} \right)\).
b)
- Hệ số góc của đường thẳng \(d:y = 2x\) là\(a = 2\).
- Hệ số góc của đường thẳng \(d’:y = x\) là\(a = 1\).
Hai đường thẳng có hệ số góc khác nhau thì cắt nhau.
c) Vì \(d\) và \(d”\) cắt nhau nên chúng không thể song song với nhau hoặc trùng nhau. Do đó, hệ số góc của \(d\) và \(d”\) phải khác nhau. Khi đó, hệ số góc của \(d”\) khác 2.
Hãy chỉ ra ba cặp đường thẳng cắt nhau và các cặp đường thẳng song song với nhau trong các đường thẳng sau:
\({d_1}:y = 3x\); \({d_2}:y = - 7x + 9\);
\({d_3}:y = 3x - 0,8\); \({d_4}:y = - 7x - 1\);
\({d_5}:y = \sqrt 2 x + 10\); \({d_6}:y = \sqrt 2 x + \sqrt {10} \)
- Hệ số \(a\) là hệ số góc của đường thẳng \(y = ax + b\left( {a \ne 0} \right)\).
- Hai đường thẳng phân biệt song song với nhau khi có hệ số góc bằng nhau.
- Hai đường thẳng cắt nhau khi có hệ số góc khác nhau.
Hệ số góc của đường thẳng \({d_1}:y = 3x\) là \(a = 3\);
Hệ số góc của đường thẳng \({d_2}:y = - 7x + 9\) là \(a = - 7\);
Hệ số góc của đường thẳng \({d_3}:y = 3x - 0,8\) là \(a = 3\);
Hệ số góc của đường thẳng \({d_4}:y = - 7x - 1\) là \(a = - 7\);
Hệ số góc của đường thẳng \({d_5}:y = \sqrt 2 x + 10\) là \(a = \sqrt 2 \);
Hệ số góc của đường thẳng \({d_6}:y = \sqrt 2 x + \sqrt {10} \) là \(a = \sqrt 2 \);
- Các cặp đường thẳng song song là:
\({d_1}:y = 3x\) và \({d_3}:y = 3x - 0,8\) vì đều có hệ số góc \(a = 3\) và chúng phân biệt với nhau do chúng cắt \(Oy\) tại hai điểm phân biệt.
\({d_2}:y = - 7x + 9\) và \({d_4}:y = - 7x - 1\) vì đều có hệ số góc \(a = - 7\)và chúng phân biệt với nhau do chúng cắt \(Oy\) tại hai điểm phân biệt.
\({d_5}:y = \sqrt 2 x + 10\) và \({d_6}:y = \sqrt 2 x + \sqrt {10} \) vì đều có hệ số góc \(a = \sqrt 2 \)và chúng phân biệt với nhau do chúng cắt \(Oy\) tại hai điểm phân biệt.
- Ba cặp đường thẳng cắt nhau là:
\({d_1}:y = 3x\) và \({d_4}:y = - 7x - 1\) vì có hệ số góc khác nhau \(\left( {3 \ne - 7} \right)\).
\({d_2}:y = - 7x + 9\) và \({d_6}:y = \sqrt 2 x + \sqrt {10} \) vì có hệ số góc khác nhau \(\left( { - 7 \ne \sqrt 2 } \right)\).
\({d_3}:y = 3x - 0,8\) và \({d_5}:y = \sqrt 2 x + 10\) vì có hệ số góc khác nhau \(\left( {3 \ne \sqrt 2 } \right)\).
Hai ô tô khởi cùng lúc và cùng vận tốc 50 \(km/h\), một ô tô bắt đầu từ \(B\), một ô tô bắt đầu từ \(C\) và cùng đi về phía \(D\).
a) Viết công thức của hai hàm số biểu thị khoảng cách từ \(A\) đến mỗi xe sau \(x\) giờ.
b) Chứng tỏ đồ thị của hai hàm số trên là hai đường thẳng song song.
- Quãng đường vật đi được trong khoảng thời gian \(t\left( h \right)\) với vận tốc \(v\left( {km/h} \right)\) là:
\(s = v.t\)
- Khoảng cách của xe sau \(t\left( h \right)\) với một điểm là:
\(y = {y_0} + v.t\)
Với \({y_0}\) là khoảng cách của xe với điểm ở thời điểm ban đầu, \(v\) là vận tốc của xe, t là thời gian xe đã đi.
- Hai hàm số có đồ thị là hai đường thẳng song song nếu chúng phân biệt và có hệ số góc bằng nhau.
a)
- Quãng đường xe ô tô khởi hành từ \(B\) đi được sau khoảng thời gian \(x\left( h \right)\) với vận tốc 50 km/h là: \(s = v.t = 50.x\)
Khi đó, công thức biểu thị khoảng cách từ điểm \(A\) đến xe là:
\(y = {y_0} + v.t = 3 + 50.x\).
- Quãng đường xe ô tô khởi hành từ \(C\) đi được sau khoảng thời gian \(x\left( h \right)\) với vận tốc 50 km/h là: \(s = v.t = 50.x\)
Khi đó, công thức biểu thị khoảng cách từ điểm \(A\) đến xe là:
\(y = {y_0} + v.t = 5 + 50.x\).
b) Đồ thị của hai hàm số trên là hai đường thẳng phân biệt vì cắt \(Oy\) tại hai điểm phân biệt.
Hai đường thẳng đó song song với nhau vì hệ số góc của hai đường thẳng này bằng nhau (đều có \(a = 50\)).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK