HĐ 2
Cho tam giác ABC cân tại A (Hình 5). Gọi M là trung điểm cạnh BC. Nối A với M. Em hãy làm theo gợi ý sau để chứng minh \(\widehat {ABC}\)=\(\widehat {ACB}\).
Xét \(\Delta AMB\) và \(\Delta AMC\)có:
AB = ? (?)
MB = MC (?)
AM là cạnh ?
Vậy \(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
Suy ra \(\widehat {ABC}\)=\(\widehat {ACB}\)
Dựa vào định nghĩa của tam giác cân là tam giác có 2 cạnh bằng nhau
Xét \(\Delta AMB\) và \(\Delta AMC\).có:
AB = AC ( do tam giác ABC cân tại A )
MB = MC ( do M là trung điểm BC )
AM là cạnh chung
=>\(\Delta AMB\) =\(\Delta AMC\) (c.c.c)
=>\(\widehat {ABC}\)=\(\widehat {ACB}\)( 2 góc tương ứng)
Thực hành 2
Tìm số đo các góc chưa biết của mỗi tam giác trong Hình 7.
Dựa vào định lí 2 góc đáy của tam giác cân bằng nhau
a) Vì \(\Delta MNP\) cân tại M ( theo giả thiết )
\( \Rightarrow \widehat N = \widehat P = {70^o}\) ( 2 góc đáy của tam giác cân )
\( \Rightarrow \widehat M = {180^o} - {2.70^o} = {40^o}\)
b) Xét \(\Delta EFH\) cân tại E
Theo định lí về tổng 3 góc trong tam giác ta có
\( \Rightarrow \widehat E + \widehat F + \widehat H = {180^o}\)
Mà \(\widehat F = \widehat H\)( tính chất tam giác cân )
\( \Rightarrow \widehat F = \widehat H = {180^o} - \widehat E = ({180^o} - {70^o}):2 = {55^o}\)
Vận dụng 1
Trong hình mái nhà ở Hình 8, tính góc B và góc C, biết \(\widehat A\)= \({110^o}\).
Dựa vào tính chất 2 góc đáy của tam giác cân bằng nhau
Vì tổng số đo 3 góc trong tam giác là \({180^o}\)
\( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)
Mà \(\widehat B = \widehat C\)\( = ({180^o} - \widehat A):2\)\( = ({180^o} - {110^o}):2 = {35^o}\)
HĐ 3
Cho tam giác ABC có \(\widehat A\)=\(\widehat C\). Vẽ đường thẳng đi qua điểm B, vuông góc với AC và cắt AC tại điểm H (Hình 9). Em hãy làm theo gợi ý sau để chứng minh BA = BC.
Xét \(\Delta AHB\)và \(\Delta CHB\)cùng vuông tại H, ta có:
BH là cạnh góc vuông ?
\(\widehat {HAB}\) = \(\widehat {HCB}\) suy ra \(\widehat {ABH} = \widehat {CBH}\) (?)
Vậy \(\Delta AHB = \Delta CHB\). Suy ra BA = BC
Ta chứng minh \(\Delta AHB = \Delta CHB\) rồi từ đó suy ra BA = BC
Xét \(\Delta AHB\) và \(\Delta CHB\) cùng vuông tại H, ta có:
BH là cạnh góc vuông của và
\(\widehat {ABH} = \widehat {CBH}\)( Do cùng bằng \({90^o} - \widehat {HAB} = {90^o} - \widehat {HCB}\) )
\( \Rightarrow \) \(\Delta AHB = \Delta CHB\)
\( \Rightarrow \) BA = BC
Thực hành 3
Tìm các tam giác cân trong Hình 11 và đánh dấu vào các cạnh bằng nhau.
Ta tìm các tam giác cân từ các góc ở đáy rồi suy ra các cạnh bằng nhau
a) Ta có tam giác ABC cân tại A do 2 góc đáy B, C cùng bằng 68°
Nên AB = AC
b) Vì tổng các góc trong tam giác = 180° nên \(\widehat M + \widehat N + \widehat P = {180^o}\)
\( \Rightarrow \widehat P = {180^o} - {45^o} - {90^o} = {45^o}\)
\( \Rightarrow \) \(\Delta MNP\) vuông cân tại N
\( \Rightarrow \) MN = NP
c) Xét \(\Delta EFG\) theo định lí về tổng số đo các góc trong tam giác ta có :
\( \Rightarrow \widehat F + \widehat E + \widehat G = {180^o}\)
\( \Rightarrow \widehat F = {180^o} - {35^o} - {27^o} = {118^o}\)
\( \Rightarrow \Delta EFG\) không cân nên không có các cặp cạnh bằng nhau
Vận dụng 2
Cho tam giác ABC cân tại A có góc B bằng \({60^o}\). Chứng minh rằng tam giác ABC đều.
Ta chứng minh 3 góc của tam giác đều bằng \({60^o}\)
Ta có: tam giác ABC cân tại A
Nên \(\widehat B = \widehat C = {60^o}\)( 2 góc đáy của tam giác cân )
Theo định lí về tổng 3 góc trong tam giác ta có : \(\widehat A + \widehat B + \widehat C = {180^o}\)
\( \Rightarrow \widehat A = {180^o} - {60^o} - {60^o} = {60^o}\)
Vì \(\widehat A = \widehat B = \widehat C = {60^o}\)\( \Rightarrow \) tam giác ABC là tam giác đều
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- CHÂN TRỜI SÁNG TẠO là bộ sách giáo khoa hiện đại.
- Bộ sách giáo khoa CHÂN TRỜI SÁNG TẠO sẽ truyền cảm hứng để giúp các em học sinh phát triển toàn diện về tư duy, phẩm chất và năng lực, giúp người học dễ dàng vận dụng kiến thức, kĩ năng vào thực tiễn cuộc sống; giải quyết một cách linh hoạt, hài hoà các vấn đề giữa cá nhân và cộng đồng; nhận biết các giá trị bản thân và năng lực nghề nghiệp mà còn nuôi dưỡng lòng tự hào, tình yêu tha thiết với quê hương đất nước, mong muốn được góp sức xây dựng non sông này tươi đẹp hơn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, chúng ta đã dần quen với nhịp điệu học tập. Hãy tiếp tục nỗ lực và khám phá thêm những kiến thức mới mẻ!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK