Từ mặt nước trong một bể nước, tại ba vị trí đôi một cách nhau 2m, người ta lần lượt thả dây dọi để quả dọi chạm đáy bể. Phần dây dọi (thẳng) nằm trong nước tại ba vị trí đó lần lượt có độ dài 4m; 4,4m; 4,8m. Biết đáy bể là phẳng. Hỏi đáy bể nghiêng so với mặt phẳng nằm ngang một góc bao nhiêu độ?
Sử dụng kiến thức về góc giữa hai mặt phẳng để tính: Trong không gian Oxyz, cho hai mặt phẳng (P), (Q) tương ứng có các vectơ pháp tuyến là \(\overrightarrow n = \left( {A;B;C} \right),\overrightarrow {n’} = \left( {A’;B’;C’} \right)\). Khi đó, góc giữa (P) và (Q), kí hiệu là ((P), (Q)) được tính theo công thức:
\(\cos \left( {\left( P \right),\left( Q \right)} \right) = \left| {\cos \left( {\overrightarrow n ,\overrightarrow {n’} } \right)} \right| = \frac{{\left| {AA’ + BB’ + CC’} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} .\sqrt {A{‘^2} + B{‘^2} + C{‘^2}} }}\).
Gọi 3 điểm cách nhau 2m trên mặt nước là A, B, C. Vị trí thả quả rọi xuống đáy bể lần lượt là A’, B’, C’ sao cho \(AA’ = 4m,BB’ = 4,4m,CC’ = 4,8m\). Chọn gốc tọa độ O tại trung điểm AB.
Khi đó, A(0;1;0) B(0;-1;0) C(\(\sqrt 3 \);0;0); A’(0;1;4); B’(0;-1;4,4); C’ (\(\sqrt 3 \);0; 4,8)
Ta có: \(\overrightarrow {A’B’} = \left( {0; - 2;0,4} \right);\overrightarrow {B’C’} = \left( {\sqrt 3 ;1;0,4} \right)\)
Mặt phẳng (A’B’C’) nhận \(\left[ {\overrightarrow {A’B’} ;\overrightarrow {B’C’} } \right]\) làm một vectơ pháp tuyến
Ta có: \(\left[ {\overrightarrow {A’B’} ;\overrightarrow {B’C’} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 2}&{0,4}\\1&{0,4}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{0,4}&0\\{0,4}&{\sqrt 3 }\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 2}\\{\sqrt 3 }&1\end{array}} \right|} \right) = \left( {\frac{{ - 6}}{5};\frac{{2\sqrt 3 }}{5};2\sqrt 3 } \right)\)
Mặt phẳng đáy bể là mp(A’ B’ C’) nên có vectơ pháp tuyến là \(\overrightarrow n = \left( { - \frac{6}{5};\frac{{2\sqrt 3 }}{5};2\sqrt 3 } \right)\)
Mặt phẳng ngang (mặt nước) là mp (Oxy) có vectơ pháp tuyến là \(\overrightarrow k {\rm{ = }}\left( {0;0;1} \right).\)
Nên góc giữa mặt phẳng đáy bể và mặt phẳng ngang là:
\(\cos \left( {\left( {A’B’C’} \right),\left( {Oxy} \right)} \right) = \frac{{\left| {\frac{{ - 6}}{5}.0 + \frac{{2\sqrt 3 }}{5}.0 + 2\sqrt 3 .1} \right|}}{{\sqrt {{{\left( {\frac{{ - 6}}{5}} \right)}^2} + {{\left( {\frac{{2\sqrt 3 }}{5}} \right)}^2} + {{\left( {2\sqrt 3 } \right)}^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{5\sqrt {29} }}{{29}}\)
\( \Rightarrow \left( {\left( {A’B’C’} \right),\left( {Oxy} \right)} \right) \approx 21,{8^0}\)
Vậy đáy bể nghiêng so với mặt phẳng nằm ngang 1 góc khoảng 21,8 độ.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK