Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Chương 2. Vectơ và hệ trục tọa độ trong không gian Giải mục 1 trang 60, 61 Toán 12 tập 1 - Kết nối tri thức: Các mặt phẳng tọa độ trong Hình 2.35 có đôi một vuông góc với nhau không?...

Giải mục 1 trang 60, 61 Toán 12 tập 1 - Kết nối tri thức: Các mặt phẳng tọa độ trong Hình 2.35 có đôi một vuông góc với nhau không?...

. Gợi ý giải HĐ1, CH, LT1 mục 1 trang 60, 61 SGK Toán 12 tập 1 - Kết nối tri thức Bài 7. Hệ trục tọa độ trong không gian. Hệ trục tọa độ trong không gian... Các mặt phẳng tọa độ trong Hình 2.35 có đôi một vuông góc với nhau không?

Câu hỏi:

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 60 SGK Toán 12 Kết nối tri thức

Trong không gian, xét ba trục Ox, Oy, Oz có chung gốc O và đôi một vuông góc với nhau. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) là các vectơ đơn vị trên các trục đó (H.2.35).

image

a) Gọi tên các mặt phẳng tọa độ có trong Hình 2.35.

b) Các mặt phẳng tọa độ trong Hình 2.35 có đôi một vuông góc với nhau không?

Hướng dẫn giải :

Sử dụng kiến thức về hai mặt phẳng vuông góc để chứng minh: Nếu mặt phẳng này chứa một đường thẳng vuông góc với mặt phẳng kia thì hai mặt phẳng đó vuông góc với nhau.

Lời giải chi tiết :

a) Các mặt phẳng có trong hình vẽ là: Mặt phẳng (Oxy), (Oyz), (Ozx).

b) Vì \(Ox \bot Oy,Oy \bot Oz\), Ox và Oz cắt nhau tại O và nằm trong mặt phẳng (Oxz) nên \(Oy \bot \left( {Oxz} \right)\). Mà \(Oy \subset \left( {Oxy} \right) \Rightarrow \left( {Oxz} \right) \bot \left( {Oxy} \right),Oy \subset \left( {Oyz} \right) \Rightarrow \left( {Oyz} \right) \bot \left( {Oxz} \right)\)

Chứng minh tương tự ta có: \(\left( {Oyz} \right) \bot \left( {Oxy} \right)\)

Vậy ba mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau.


Câu hỏi:

Câu hỏi

Trả lời Câu hỏi trang 61 SGK Toán 12 Kết nối tri thức

Góc căn phòng trong Hình 2.34 có gợi lên hình ảnh về hệ tọa độ Oxyz trong không gian hay không? Nếu có hãy mô tả gốc tọa độ và các mặt phẳng tọa độ trong hình ảnh đó.

image

Hướng dẫn giải :

Sử dụng kiến thức hệ về hệ tọa độ trong không gian để mô tả: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.

Lời giải chi tiết :

Góc căn phòng trong Hình 2.34 gợi lên hình ảnh về hệ trục tọa độ Oxyz trong không gian.

image

Mô tả: Hệ tọa độ Oxyz có:

+ Mặt phẳng (Oxy) là sàn nhà, hai mặt phẳng (Oyz), (Ozx) hai bức tường. Khi đó, ba mặt phẳng đôi một vuông góc với nhau.

+ Gốc tọa độ O (trùng với một góc phòng) là giao điểm của ba trục Ox, Oy, Oz.


Câu hỏi:

Luyện tập1

Trả lời câu hỏi Luyện tập 1 trang 61SGK Toán 12 Kết nối tri thức

Cho hình hộp chữ nhật ABCD.A’B’C’D’. Có thể lập một hệ tọa độ Oxyz có gốc O trùng với đỉnh C và các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt cùng hướng với các vectơ \(\overrightarrow {CB} ,\overrightarrow {CD} ,\overrightarrow {CC’} \) không? Vì sao?

Hướng dẫn giải :

Sử dụng kiến thức về hệ tọa độ trong không gian để mô tả: Trong không gian, ba trục Ox, Oy, Oz đôi một vuông góc với nhau tại gốc O của mỗi trục. Gọi \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt là các vectơ đơn vị trên các trục Ox, Oy, Oz. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Descartes vuông góc Oxyz (hay đơn giản là hệ tọa độ Oxyz). Điểm O được gọi là gốc tọa độ, các mặt phẳng (Oxy), (Oyz), (Ozx) đôi một vuông góc với nhau và được gọi là các mặt phẳng tọa độ. Không gian với hệ tọa độ Oxyz còn được gọi là không gian Oxyz.

Lời giải chi tiết :

image

Vì ABCD. A’B’C’D’ là hình hộp chữ nhật nên các cạnh CC’, CB và CD đôi một vuông góc với nhau.

Các vectơ \(\overrightarrow {CB} ,\overrightarrow {CD} ,\overrightarrow {CC’} \) cùng có điểm đầu là C.

Do đó, suy ra có thể lập một hệ tọa độ Oxyz có gốc O trùng với đỉnh C và các vectơ \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \) lần lượt cùng hướng với các vectơ \(\overrightarrow {CB} ,\overrightarrow {CD} ,\overrightarrow {CC’} \).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK