Trang chủ Lớp 12 SGK Toán 12 - Kết nối tri thức Chương 2. Vectơ và hệ trục tọa độ trong không gian Giải mục 1 trang 67, 68 Toán 12 tập 1 - Kết nối tri thức: Nếu tọa độ của vectơ \(\overrightarrow a \) là (x; y; z) thì tọa độ của vectơ đối của \(\overrightarrow...

Giải mục 1 trang 67, 68 Toán 12 tập 1 - Kết nối tri thức: Nếu tọa độ của vectơ \(\overrightarrow a \) là (x; y; z) thì tọa độ của vectơ đối của \(\overrightarrow...

. Hướng dẫn giải HĐ1, CH, LT1, HĐ2, LT2 mục 1 trang 67, 68 SGK Toán 12 tập 1 - Kết nối tri thức Bài 8. Biểu thức tọa độ của các phép toán vectơ. Biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ...Nếu tọa độ của vectơ \(\overrightarrow a \) là (x; y; z) thì tọa độ của vectơ đối của \(\overrightarrow

Câu hỏi:

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 67 SGK Toán 12 Kết nối tri thức

Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {1;0;5} \right)\) và \(\overrightarrow b = \left( {1;3;9} \right)\).

a) Biểu diễn hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \).

b) Biểu diễn hai vectơ \(\overrightarrow a + \overrightarrow b \) và \(2\overrightarrow a \) qua các vectơ đơn vị \(\overrightarrow i ,\overrightarrow j ,\overrightarrow k \), từ đó xác định tọa độ của hai vectơ đó.

Hướng dẫn giải :

Sử dụng kiến thức về tọa độ của vectơ trong không gian để tính: Trong không gian Oxyz, cho vectơ \(\overrightarrow a \) tùy ý. Bộ ba số (x; y; z) duy nhất sao cho \(\overrightarrow a = x\overrightarrow i + y\overrightarrow j + z\overrightarrow k \) được gọi là tọa độ của \(\overrightarrow a \) đối với hệ tọa độ Oxyz. Khi đó, ta viết \(\overrightarrow a = \left( {x;y;z} \right)\) hoặc \(\overrightarrow a \left( {x;y;z} \right)\).

Lời giải chi tiết :

a) Ta có: \(\overrightarrow a = \left( {1;0;5} \right) = \overrightarrow i + 5\overrightarrow k \); \(\overrightarrow b = \left( {1;3;9} \right) = \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k \).

b) Ta có: \(\overrightarrow a + \overrightarrow b = \overrightarrow i + 5\overrightarrow k + \overrightarrow i + 3\overrightarrow j + 9\overrightarrow k = 2\overrightarrow i + 3\overrightarrow j + 14\overrightarrow k \). Do đó, \(\overrightarrow a + \overrightarrow b = \left( {2;3;14} \right)\)

\(2\overrightarrow a = 2\left( {\overrightarrow i + 5\overrightarrow k } \right) = 2\overrightarrow i + 10\overrightarrow k \). Do đó, \(2\overrightarrow a = \left( {2;0;10} \right)\)


Câu hỏi:

Câu hỏi

Trả lời Câu hỏi trang 67 SGK Toán 12 Kết nối tri thức

Nếu tọa độ của vectơ \(\overrightarrow a \) là (x; y; z) thì tọa độ của vectơ đối của \(\overrightarrow a \) là gì?

Hướng dẫn giải :

Sử dụng kiến thức hệ về biểu thức tọa độ của phép nhân một số với một vectơ để tìm tọa độ của vectơ để tính: Trong không gian Oxyz cho vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) thì \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực.

Lời giải chi tiết :

Vectơ đối của \(\overrightarrow a \) là \( - \overrightarrow a \).

Tọa độ của vectơ đối của \(\overrightarrow a \) là: \(\left( { - x; - y; - z} \right)\).


Câu hỏi:

Luyện tập1

Trả lời Luyện tập 1 trang 68SGK Toán 12 Kết nối tri thức

Trong không gian Oxyz, cho ba vectơ \(\overrightarrow u = \left( {1;8;6} \right),\overrightarrow v = \left( { - 1;3; - 2} \right)\) và \(\overrightarrow w = \left( {0;5;4} \right)\). Tìm tọa độ của vectơ \(\overrightarrow u - 2\overrightarrow v + \overrightarrow w \).

Hướng dẫn giải :

Sử dụng kiến thức hệ về biểu thức tọa độ của phép cộng hai vectơ, phép trừ hai vectơ, phép nhân một số với một vectơ để tìm tọa độ của vectơ: Trong không gian Oxyz, cho hai vectơ \(\overrightarrow a = \left( {x;y;z} \right)\) và \(\overrightarrow b = \left( {x’;y’;z’} \right)\). Ta có:

+ \(\overrightarrow a + \overrightarrow b = \left( {x + x’;y + y’;z + z’} \right)\);

+ \(\overrightarrow a - \overrightarrow b = \left( {x - x’;y - y’;z - z’} \right)\);

+ \(k\overrightarrow a = \left( {kx;ky;kz} \right)\) với k là một số thực.

Lời giải chi tiết :

\(\overrightarrow u - 2\overrightarrow v + \overrightarrow w = \left( {1;8;6} \right) - 2\left( { - 1;3; - 2} \right) + \left( {0;5;4} \right) = \left( {1 + 2;8 - 6 + 5;6 + 4 + 4} \right) = \left( {3;7;14} \right)\)


Câu hỏi:

Hoạt động2

Trả lời Hoạt động 2 trang 68SGK Toán 12 Kết nối tri thức

Trong không gian Oxyz, cho tam giác ABC có \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\).

a) Gọi M là trung điểm của đoạn thẳng AB. Tìm tọa độ của M theo tọa độ của A và B.

b) Gọi G là trọng tâm của tam giác ABC. Tìm tọa độ của G theo tọa độ của A và B và C.

Hướng dẫn giải :

a) Sử dụng kiến thức về hệ thức trung điểm của đoạn thẳng để tính: Nếu M là trung điểm của AB thì \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\).

b) Sử dụng kiến thức về hệ thức trọng tâm của tam giác để tính: Nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\).

Lời giải chi tiết :

Ta có: \(\overrightarrow {OA} = \left( {{x_A};{y_A};{z_A}} \right),\overrightarrow {OB} = \left( {{x_B};{y_B};{z_B}} \right),\overrightarrow {OC} = \left( {{x_C};{y_C};{z_C}} \right)\)

a) Vì M là trung điểm của AB nên \(\overrightarrow {OM} = \frac{1}{2}\left( {\overrightarrow {OA} + \overrightarrow {OB} } \right)\)\( \Rightarrow \left\{ \begin{array}{l}{x_M} = \frac{{{x_A} + {x_B}}}{2}\\{y_M} = \frac{{{y_A} + {y_B}}}{2}\\{z_M} = \frac{{{z_A} + {z_B}}}{2}\end{array} \right.\).

Do đó, \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2};\frac{{{z_A} + {z_B}}}{2}} \right)\).

b) Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right)\)

\( \Rightarrow \left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right.\). Do đó, \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).


Câu hỏi:

Luyện tập2

Trả lời Luyện tập 2 trang 69SGK Toán 12 Kết nối tri thức

Trong không gian Oxyz, cho ba điểm \(A\left( {2;9; - 1} \right),B\left( {9;4;5} \right)\) và \(G\left( {3;0;4} \right)\). Tìm tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm.

Hướng dẫn giải :

Sử dụng kiến thức về công thức tọa độ trọng tâm của tam giác để tính: Trong không gian Oxyz, cho ba điểm không thẳng hàng \(A\left( {{x_A};{y_A};{z_A}} \right),B\left( {{x_B};{y_B};{z_B}} \right)\) và \(C\left( {{x_C};{y_C};{z_C}} \right)\). Khi đó, tọa độ trọng tâm của tam giác ABC là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3};\frac{{{z_A} + {z_B} + {z_C}}}{3}} \right)\).

Lời giải chi tiết :

Để G là trọng tâm của tam giác ABC thì

\(\left\{ \begin{array}{l}{x_G} = \frac{{{x_A} + {x_B} + {x_C}}}{3}\\{y_G} = \frac{{{y_A} + {y_B} + {y_C}}}{3}\\{z_G} = \frac{{{z_A} + {z_B} + {z_C}}}{3}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{x_C} = 3{x_G} - {x_A} - {x_B} = 3.3 - 2 - 9 = - 2\\{y_C} = 3{y_G} - {y_A} - {y_B} = 3.0 - 9 - 4 = - 13\\{z_C} = 3{z_G} - {z_A} - {z_B} = 3.4 + 1 - 5 = 8\end{array} \right.\)

Vậy \(C\left( { - 2; - 13;8} \right)\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 12

Lớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK