Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Chương VII. Quan hệ vuông góc trong không gian Bài 7.52 trang 43 SBT Toán 11 - Kết nối tri thức: Cho hình chóp S. ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt...

Bài 7.52 trang 43 SBT Toán 11 - Kết nối tri thức: Cho hình chóp S. ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt...

Chứng minh \(BD \bot \left( {SAC} \right)\) từ đó suy ra \(\left( {SBD} \right) \bot \left( {SAC} \right)\). Hướng dẫn giải - Bài 7.52 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập cuối chương VII. Cho hình chóp S. ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)...

Đề bài :

Cho hình chóp S.ABCD có \(SA \bot (ABCD)\) biết ABCD là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \)

a) Chứng minh rằng\((SAC) \bot (SBD)\) và \((SAD) \bot (SCD)\)

b) Gọi BE, DF là hai đường cao của tam giác SBD. Chứng minh \((ACF) \bot (SBC)\) và \((AEF) \bot (SAC)\)

c) Tính theo a khoản cách giữa hai đường thẳng BD và SC

Hướng dẫn giải :

a) Chứng minh \(BD \bot \left( {SAC} \right)\) từ đó suy ra \(\left( {SBD} \right) \bot \left( {SAC} \right)\).

b) Chứng minh \(AF \bot \left( {SBC} \right)\) từ đó suy ra \(\left( {ACF} \right) \bot \left( {SBC} \right)\).

Chứng minh \(SC \bot \left( {AEF} \right)\) suy ra \(\left( {AEF} \right) \bot \left( {SAC} \right)\).

c) Dựng đoạn vuông góc chung của \(BD\) và \(SC\),

Tính độ dài đoạn vuông góc chung của \(BD\) và \(SC\),

Lời giải chi tiết :

image

a) Ta có: \(BD \bot AC,SA \bot \left( {ABCD} \right)\) nên \(SA \bot BD\), suy ra \(BD \bot \left( {SAC} \right)\), mà mặt phẳng \(\left( {SBD} \right)\) chứa đường thẳng \(BD\), do đó \(\left( {SBD} \right) \bot \left( {SAC} \right)\).

Ta có: \(CD \bot AD,CD \bot SA\), suy ra \(CD \bot \left( {SAD} \right)\), mà mặt phẳng \(\left( {SCD} \right)\) chứa đường thẳng \(CD\), do đó \(\left( {SCD} \right) \bot \left( {SAD} \right)\).

b) Ta có: \(AD \bot \left( {SAB} \right)\) nên \(AD \bot SB\), mà \(SB \bot DF\) suy ra \(SB \bot \left( {ADF} \right)\), do đó

\(SB \bot AF\).

Ta lại có \(BC \bot \left( {SAB} \right)\) nên \(BC \bot AF\), suy ra \(AF \bot \left( {SBC} \right)\), mà mặt phẳng \(\left( {ACF} \right)\) chứa đường thẳng \(AF\) nên \(\left( {ACF} \right) \bot \left( {SBC} \right)\).

Vì \(AF \bot \left( {SBC} \right)\) nên \(AF \bot SC\).

Tương tự, ta có \(AE \bot \left( {SCD} \right)\) nên \(AE \bot SC\), suy ra \(SC \bot \left( {AEF} \right)\), mà mặt phẳng \(\left( {SAC} \right)\) chứa đường thẳng \(SC\) nên \(\left( {AEF} \right) \bot \left( {SAC} \right)\).

c) Gọi \(O\) là giao điểm của \(AC\) và \(BD\), kẻ \(OH \bot SC\) tại \(H\), mà \(BD \bot \left( {SAC} \right)\) nên \(OH \bot BD\), suy ra \(OH\) là đoạn vuông góc chung của \(BD\) và \(SC\), hay \(d\left( {BD,SC} \right) = OH\)

Ta có: \(\Delta CHO\) đồng dạng với \(\Delta CAS\) nên \(\frac{{OC}}{{CS}} = \frac{{OH}}{{AS}}\), suy ra \(OH = \frac{{AS \cdot OC}}{{CS}} = \frac{a}{2}\).

Vậy \(d\left( {BD,SC} \right) = \frac{a}{2}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK