Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Chương VII. Quan hệ vuông góc trong không gian Giải câu hỏi trang 61, 62, 63 Toán 11 tập 2 - Kết nối tri thức: Khi mua máy điều hoà...

Giải câu hỏi trang 61, 62, 63 Toán 11 tập 2 - Kết nối tri thức: Khi mua máy điều hoà...

Giải HĐ 1 , LT 1 , LT 2 , VD câu hỏi trang 61, 62, 63 SGK Toán 11 tập 2 - Kết nối tri thức Bài 27. Thể tích. Khi mua máy điều hoà, bác An được hướng dẫn rằng mỗi mét khối của phòng cần công suất điều hoà khoảng 200 BTU...Khi mua máy điều hoà

Câu hỏi:

Hoạt động 1

Khi mua máy điều hoà, bác An được hướng dẫn rằng mỗi mét khối của phòng cần công suất điều hoà khoảng 200 BTU. Căn phòng bác An cần lắp máy có dạng hình hộp chữ nhật, rộng 4 m, dài 5 m và cao 3 m. Hỏi bác An cần mua loại điều hoà có công suất bao nhiêu BTU?

image

Hướng dẫn giải :

Thể tích hình hộp chữ nhật = chiều dài x chiều rộng x chiều cao

Lời giải chi tiết :

Thể tích của căn phòng là:

\(V = 4.5.3 = 60\left( {{m^3}} \right)\)

Vì mỗi mét khối của phòng cần công suất điều hoà khoảng 200 BTU nên công suất cần thiết cho máy điều hoà của căn phòng bác An là:

60.200 = 12000 BTU

Do đó, bác An cần mua một máy điều hoà có công suất khoảng 12 000 BTU để làm mát cho căn phòng của mình.


Câu hỏi:

Luyện tập 1

Cho khối chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng b. Tính thể tích của khối chóp.

image

Hướng dẫn giải :

Thế tích khối chóp \(V = \frac{1}{3}h.S\)

Lời giải chi tiết :

Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \)

\( \Rightarrow OA = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\)

Xét tam giác SAO vuông tại O có

\(SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {{b^2} - {{\left( {\frac{{a\sqrt 2 }}{2}} \right)}^2}} = \sqrt {{b^2} - \frac{{{a^2}}}{2}} = \frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}\)

\({S_{ABCD}} = {a^2}\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{{\sqrt {4{b^2} - 2{a^2}} }}{2}.{a^2} = \frac{{{a^2}\sqrt {4{b^2} - 2{a^2}} }}{6}\)


Câu hỏi:

Luyện tập 2

Cho khối chóp cụt đều ABC.A’B’C’ có đường cao HH’ = h, hai mặt đáy ABC, A’B’C’ có cạnh tương ứng bằng 2a, a.

a) Tính thể tích của khối chóp cụt.

b) Gọi B1,C1 tương ứng là trung điểm của AB, AC. Chứng minh rằng AB1C1.A’B’C’ là một hình lăng trụ. Tính thể tích khối lăng trụ AB1C1.A’B’C’.

image

Hướng dẫn giải :

Thể tích khối chóp cụt đều \(V = \frac{1}{3}.h.\left( {S + S’ + \sqrt {S.S’} } \right)\)

Thể tích khối lăng trụ \(V = h.S\)

Lời giải chi tiết :

a) Tam giác đều ABC có diện tích \(S = \frac{{{{\left( {2a} \right)}^2}\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Tam giác đều A’B’C’ có diện tích \(S’ = \frac{{{a^2}\sqrt 3 }}{4}\)

Thể tích khối chóp cụt

\(V = \frac{1}{3}.HH’.\left( {S + S’ + \sqrt {S.S’} } \right) = \frac{1}{3}.h.\left( {{a^2}\sqrt 3 + \frac{{{a^2}\sqrt 3 }}{4} + \sqrt {{a^2}\sqrt 3 .\frac{{{a^2}\sqrt 3 }}{4}} } \right) = \frac{{7{a^2}\sqrt 3 }}{{12}}\)

b) Vì ABC.A’B’C’ là khối chóp cụt đều nên (ABC) // (A’B’C’)

Mà \(\left( {A{B_1}{C_1}} \right) \subset \left( {ABC} \right) \Rightarrow \left( {A{B_1}{C_1}} \right)//\left( {A’B’C’} \right)\)

Xét tam giác ABC có

B1,C1 tương ứng là trung điểm của AB, AC

\( \Rightarrow \) B1C1 là đường trung bình của tam giác ABC

\( \Rightarrow \) \({B_1}{C_1} = \frac{{BC}}{2}\) và B1C1 // BC mà \(B’C’ = \frac{{BC}}{2}\) và BC // B’C’

\( \Rightarrow \) B1C1 = B’C’ và B1C1 // B’C’ \( \Rightarrow \) C1C’B’B1 là hình bình hành

Ta có \(A{B_1} = A’B’ = \frac{{AB}}{2},A{B_1}//A’B’\) \( \Rightarrow \) AA’B’B1 là hình bình hành.

\(A{C_1} = A’C’ = \frac{{AC}}{2},A{C_1}//A’C’\) \( \Rightarrow \) AA’C’C1 là hình bình hành.

Do đó AB1C1.A’B’C’ là một hình lăng trụ

Thể tích hình lăng trụ \(V = HH’.S’ = h.\frac{{{a^2}\sqrt 3 }}{4}\)


Câu hỏi:

Vận dụng

Một sọt đựng đồ có dạng hình chóp cụt đều (H.7.98). Đáy và miệng sọt là các hình vuông tương ứng có cạnh bằng 30 cm, 60 cm, cạnh bên của sọt dài 50 cm. Tính thể tích của sọt.

image

Hướng dẫn giải :

Thể tích khối chóp cụt đều \(V = \frac{1}{3}.h.\left( {S + S’ + \sqrt {S.S’} } \right)\)

Lời giải chi tiết :

Diện tích mặt đáy lớn là \({S_1} = {60^2}\left( {c{m^2}} \right)\)

Diện tích mặt đáy nhỏ là \({S_2} = {30^2}\left( {c{m^2}} \right)\)

Chiều cao là \(h = \sqrt {{{50}^2} - \frac{{{{30}^2}}}{2}} = 5\sqrt {82} \left( {cm} \right)\)

\(V = \frac{1}{3}h\left( {{S_1} + {S_2} + \sqrt {{S_1}{S_2}} } \right) \approx 95082\left( {c{m^3}} \right)\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK