Trang chủ Lớp 11 SGK Toán 11 - Kết nối tri thức Chương 5 Giới hạn.Hàm số liên tục Giải mục 2 trang 114, 115 Toán 11 tập 1 - Kết nối tri thức: Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?...

Giải mục 2 trang 114, 115 Toán 11 tập 1 - Kết nối tri thức: Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?...

Phân tích và giải HĐ 3, LT 3, VD mục 2 trang 114, 115 SGK Toán 11 tập 1 - Kết nối tri thức Bài 16. Giới hạn của hàm số. Cho hàm số (fleft( x right) = 1 + frac{2}{{x - 1}}) có đồ thị như Hình 5. 4. Giả sử (left( {{x_n}} right)) là dãy số sao cho ({x_n} > 1, ;{x_n} to ; + infty )... Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

Câu hỏi:

Hoạt động 3

Cho hàm số \(f\left( x \right) = 1 + \frac{2}{{x - 1}}\) có đồ thị như Hình 5.4.

image

Giả sử \(\left( {{x_n}} \right)\) là dãy số sao cho \({x_n} > 1,\;{x_n} \to \; + \infty \). Tính \(f\left( {{x_n}} \right)\) và \(\mathop {{\rm{lim}}}\limits_{n \to + \infty } f\left( {{x_n}} \right)\).

Hướng dẫn giải :

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a; + \infty } \right)\). Ta có hàm số \(f\left( x \right)\) có giới hạn là số L khi \(x \to + \infty \) nếu dãy số \(\left( {{x_n}} \right)\) bất kỳ, \({x_n} > a\) và \({x_n} \to + \infty \), ta có \(f\left( {{x_n}} \right) \to L,\) kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = L\;\)hay \(f\left( x \right) \to L\) khi \(x \to + \infty \)

Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( { - \infty ;b} \right)\). Ta có hàm số \(f\left( x \right)\) có giới hạn là số L khi \(x \to - \infty \) nếu dãy số \(\left( {{x_n}} \right)\) bất kỳ, \({x_n} < b\) và \({x_n} \to - \infty \), ta có \(f\left( {{x_n}} \right) \to L,\) kí hiệu \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = L\;\)hay \(f\left( x \right) \to L\) khi \(x \to - \infty \).

Lời giải chi tiết :

\(f\left( {{x_n}} \right) = 1 + \frac{2}{{{x_n} - 1}}\).

\(\mathop {\lim }\limits_{n \to + \infty } f\left( {{x_n}} \right) = \mathop {\lim }\limits_{n \to + \infty } \left( {1 + \frac{2}{{{x_n} - 1}}} \right) = 1\).


Câu hỏi:

Luyện tập 3

Tính: \(\mathop {{\rm{lim}}}\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}}\).

Hướng dẫn giải :

\(a\sqrt b = \left\{ {\begin{array}{*{20}{c}}{\sqrt {{a^2}b} \;\;\;\;\;\;\;\;\;a \ge 0}\\{ - \sqrt {{a^2}b} \;\;\;\;\;a < 0}\end{array}} \right.\).

Lời giải chi tiết :

\(\begin{array}{l}\mathop {\lim }\limits_{x \to \infty } \frac{{\sqrt {{x^2} + 2} }}{{x + 1}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left| x \right|\sqrt {1 + \frac{2}{{{x^2}}}} }}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {1 + \frac{2}{{{x^2}}}} }}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {1 + \frac{2}{{{x^2}}}} }}{{1 + \frac{1}{x}}} = 1\end{array}\)


Câu hỏi:

Vận dụng

Cho tam giác vuông OAB với \(A = \left( {a;0} \right)\) và \(B = \left( {0;1} \right)\) như Hình 5.5. Đường cao OH có độ dài là h.

a) Tính h theo a,.

b) Khi điểm A dịch chuyển về O, điểm H thay đổi thế nào? Tại sao?

c) Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H thay đổi thế nào? Tại sao?

Hướng dẫn giải :

Áp dụng định lý Pytago để tính h theo a.

Tính giới hạn.

Lời giải chi tiết :

a) Ta có: \(AB = \sqrt {{a^2} + {1^1}} ,\;\;\;AB \times OH = OB \times OA\)

\( \Rightarrow h \times \sqrt {{a^2} + {1^2}} = a \Rightarrow h = \frac{a}{{\sqrt {{a^2} + {1^2}} }}\)

b) \(\mathop {\lim }\limits_{a \to 0} \frac{a}{{\sqrt {{a^2} + {1^2}\;} }} = \mathop {\lim }\limits_{a \to 0} \frac{1}{{\sqrt {1 + \frac{1}{{{a^2}}}} }} = 0\)

Vì vậy khi A dịch chuyển về O thì điểm H dịch chuyển về gần A hơn, và h dần về 0

c) \(\mathop {\lim }\limits_{a \to + \infty } \frac{a}{{\sqrt {{a^2} + 1} }} = \mathop {\lim }\limits_{a \to + \infty } \frac{1}{{\sqrt {1 + \frac{1}{{{a^2}}}} }} = 1\)

Khi A dịch chuyển ra vô cực theo chiều dương của trục Ox, điểm H dịch chuyển về phía điểm B và h dần về 1.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK