Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(A(2;1)\) và \(B(4;3).\)
a) Tìm tọa độ của điểm \(C\) thuộc trục hoành sao cho tam giác \(ABC\) vuông tại \(A.\) Tính chu vi và diện tích của tam giác \(ABC.\)
b) Tìm tọa độ điểm \(D\) sao cho tam giác \(ABD\) vuông cân tại \(A.\)
- Tính các các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) xong tính tích vô hướng của chúng để tìm tọa độ điểm \(C.\)
- Tính chu vi và diện tích tam giác \(ABC.\)
- Giải hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {AD} = 0}\\{AB = AD}\end{array}} \right.\) để tìm tọa độ điểm \(D.\)
a) Vì điểm \(C\) thuộc trục hoành nên tọa độ điểm \(C\) là: \(C(x;0)\)
Ta có: \(\overrightarrow {AB} = (2;2)\) và \(\overrightarrow {AC} = (x - 2; - 1)\)
Để tam giác \(ABC\) vuông tại \(A\) \( \Leftrightarrow \) \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)
\( \Leftrightarrow \) \(2\left( {x - 2} \right) - 2 = 0\)
\( \Leftrightarrow \) \(2x - 6 = 0\)
\( \Leftrightarrow \) \(x = 3\)
Vậy \(C(3;0).\)
Ta có: \(AB = 2\sqrt 2 ,\) \(AC = \sqrt 2 \) và \(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {3 - 4} \right)}^2} + {3^2}} = \sqrt {10} \)
Chu vi tam giác \(ABC\) là: \(AB + AC + BC = 2\sqrt 2 + \sqrt 2 + \sqrt {10} = 3\sqrt 2 + \sqrt {10} \)
Diện tích tam giác \(ABC\) là: \({S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.2\sqrt 2 .\sqrt 2 = 2\) (đvdt)
b) Gọi tọa độ điểm \(D\) là: \(D(x;y)\)
Ta có: \(\overrightarrow {AD} = (x - 2;y - 1)\) và \(\overrightarrow {AB} = (2;2)\)
Để tam giác \(ABD\) vuông cân tại \(A\)
\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{\overrightarrow {AB} .\overrightarrow {AD} = 0}\\{AB = AD}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{2\left( {x - 2} \right) + 2\left( {y - 1} \right) = 0}\\{{{\left( {x - 2} \right)}^2} + {{\left( {y - 1} \right)}^2} = 8}\end{array}} \right.\)
\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x + y = 3}\\{{{\left( {x - 2} \right)}^2} + {{\left( {y - 1} \right)}^2} = 8}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{y = 3 - x}\\{{{\left( {x - 2} \right)}^2} + {{\left( {3 - x - 1} \right)}^2} = 8}\end{array}} \right.\)
\( \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{y = 3 - x}\\{{{\left( {x - 2} \right)}^2} = 4}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{y = 3 - x}\\{x - 2 = \pm 2}\end{array}} \right.\,\, \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 3}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{x = 4}\\{y = - 1}\end{array}} \right.}\end{array}} \right.\)
Vậy \(D(0;3)\) hoặc \(D(4; - 1)\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK