Câu hỏi trang 37
Hãy tìm thêm ví dụ về chuyển động biến đổi trong cuộc sống. |
Liên hệ thực tế
Ví dụ về chuyển động biến đổi trong cuộc sống:
+ Máy bay đang bay trên bầu trời
+ Xe máy đang chuyển động trên đường
+ Con muỗi đang bay...
Câu hỏi trang 38 CH 1
1. Xác định độ biến thiên vận tốc sau 8 s của chuyển động trên 2. Xác định độ biến thiên của vận tốc sau mỗi giây của chuyển động trên trong 4 s đầu và trong 4 s cuối 3. Các đại lượng xác định được ở câu 2 cho ta biết điều gì về sự thay đổi vận tốc của chuyển động trên? |
Biểu thức độ biến thiên vận tốc: \(a = \frac{{\Delta v}}{{\Delta t}}\)
1.
Bảng số liệu của chuyển động
Độ biến thiên vận tốc sau 8 s là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{12,5}}{8} = 1,5625(m/{s^2})\)
2.
Độ biến thiên vận tốc sau 4 s đầu chuyển động:
\(a = \frac{{\Delta {v_4}}}{{\Delta {t_4}}} = \frac{{5,28}}{4} = 1,32(m/{s^2})\)
+ Độ biến thiên vận tốc sau 4 s sau chuyển động:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{12,50 - 5,28}}{4} = 1,805(m/{s^2})\)
3.
Các đại lượng được xác định trong câu 2 cho ta biết vận tốc của vật chuyển động tăng dần.
Câu hỏi trang 38 CH 2
Hãy chứng tỏ khi \(\overrightarrow a \) cùng chiều với \(\overrightarrow v \) (a.v>0) thì chuyển động là nhanh dần, khi \(\overrightarrow a \) ngược chiều với \(\overrightarrow v \) (a.v<0) thì chuyển động là chậm dần) |
Gia tốc a cho biết sự thay đổi nhanh chậm của vận tốc.
+ Chọn chiều dương là chiều chuyển động của vật
+ Giả sử vật chuyển động theo chiều dương nên v >0
+ Khi vật chuyển động nhanh dần thì vận tốc của vật cũng tăng dần, nên theo biểu thức tính gia tốc \(a = \frac{{\Delta v}}{{\Delta t}}\) , \(\Delta v > 0\)
=> a.v>0
+ Khi vật chuyển động chậm dần thì vận tốc giảm dần, \(\Delta v < 0\)
=> a.v<0
Câu hỏi trang 39
1. a) Tính gia tốc của ô tô trên 4 đoạn đường trong Hình 8.1. b) Gia tốc của ô tô trên đoạn đường 4 có gì đặc biệt so với sự thay đổi vận tốc trên các đoạn đường khác? 2. Một con báo đang chạy với vận tốc 30 m/s thì chuyển động chậm dần khi tới gần một con suối. Trong 3 giây, vận tốc của nó giảm còn 9 m/s. Tính gia tốc của con báo. 3. Đồ thị ở Hình 8.2 mô tả sự thay đổi vận tốc theo thời gian trong chuyển động của một ô tô thể thao đang chạy thử về phía Bắc. Tính gia tốc của ô tô: a) Trong 4 s đầu. b) Từ giây thứ 4 đến giây thứ 12. c) Từ giây thứ 12 đến giây thứ 20. d) Từ giây thứ 20 đến giây thứ 28. |
+ Biểu thức tính gia tốc: \(a = \frac{{\Delta v}}{{\Delta t}}\)
+ 1 m/s = 3,6 km/h
1.
a) Đổi 5 km/h = \(\frac{{25}}{{18}}\)m/s; 29 km/h = \(\frac{{145}}{{18}}\)m/s; 49 km/h = \(\frac{{245}}{{18}}\); 30 km/h = \(\frac{{25}}{3}\)m/s
+ Gia tốc trong đoạn đường 1: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{25}}{{18.1}} = \frac{{25}}{{18}} \approx 1,39(m/{s^2})\)
+ Gia tốc trong đoạn đường 2: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{\frac{{145}}{{18}} - \frac{{25}}{{18}}}}{{4 - 1}} \approx 2,22(m/{s^2})\)
+ Gia tốc trong đoạn đường 3: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{\frac{{245}}{{18}} - \frac{{145}}{{18}}}}{{6 - 4}} \approx 2,78(m/{s^2})\)
+ Gia tốc trong đoạn đường 4: \(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{\frac{{25}}{3} - \frac{{245}}{{18}}}}{{7 - 6}} \approx - 5,28(m/{s^2})\)
b) Trong 4 đoạn đường trên, vận tốc tăng dần, còn gia tốc từ đoạn đường 1 đến đoạn đường 3 tăng dần, nhưng từ đoạn đường 3 đến đoạn đường 4 thì gia tốc giảm dần.
2.
Gia tốc của con báo là:
\(a = \frac{{\Delta v}}{{\Delta t}} = \frac{{9 - 30}}{3} = - 7(m/{s^2})\)
3.
a) Trong 4 s đầu:
\(\begin{array}{l}\Delta v = 20(m/s);\Delta t = 4(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = \frac{{20}}{4} = 5(m/{s^2})\end{array}\)
b) Từ giây thứ 4 đến giây thứ 12
\(\begin{array}{l}\Delta v = 20 - 20 = 0(m/s);\Delta t = 12 - 4 = 8(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = 0(m/{s^2})\end{array}\)
c) Từ giây thứ 12 đến giây thứ 20:
\(\begin{array}{l}\Delta v = 0 - 20 = - 20(m/s);\Delta t = 20 - 12 = 8(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = \frac{{ - 20}}{8} = - 2,5(m/{s^2})\end{array}\)
d) Từ giây thứ 20 đến giây thứ 28:
\(\begin{array}{l}\Delta v = - 20 - 0 = - 20(m/s);\Delta t = 28 - 20 = 8(s)\\ \Rightarrow a = \frac{{\Delta v}}{{\Delta t}} = \frac{{ - 20}}{8} = - 2,5(m/{s^2})\end{array}\)
Học Vật Lý cần sách giáo khoa, vở bài tập, bút mực, bút chì, máy tính cầm tay và các dụng cụ thí nghiệm như máy đo, nam châm, dây dẫn.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Vật lý học là môn khoa học tự nhiên khám phá những bí ẩn của vũ trụ, nghiên cứu về vật chất, năng lượng và các quy luật tự nhiên. Đây là nền tảng của nhiều phát minh vĩ đại, từ lý thuyết tương đối đến công nghệ lượng tử.'
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK