Hướng dẫn giải câu hỏi Hoạt động 4 trang 82 SGK Toán 9
Cho hình chữ nhật ABCD và giao điểm M của hai đường chéo AC và BD (H.9.33).
a) Hãy giải thích vì sao điểm M cách đều bốn đỉnh của hình chữ nhật ABCD.
c) Chứng tỏ rằng hình chữ nhật ABCD nội tiếp một đường tròn có bán kính bằng nửa đường chéo hình chữ nhật.
a) Sử dụng tính chất hình chữ nhật suy ra: \(MA = MB = MC = MD\) nên M cách đều bốn đỉnh của hình chữ nhật ABCD.
b) Vì \(MA = MB = MC = MD\) nên bốn điểm A, B, C, D thuộc đường tròn đường kính BD.
a) Vì ABCD là hình chữ nhật, M là giao điểm của hai đường chéo nên \(MA = MB = MC = MD\) (tính chất hình chữ nhật). Do đó, M cách đều bốn đỉnh của hình chữ nhật ABCD.
b) Ta có: \(MA = MB = MC = MD = \frac{{BD}}{2}\) nên bốn điểm A, B, C, D thuộc đường tròn đường kính BD.
Do đó, hình chữ nhật ABCD nội tiếp một đường tròn có bán kính bằng nửa đường chéo hình chữ nhật.
Giải câu hỏi Hoạt động 5 trang 82 SGK Toán 9
Cho hình vuông ABCD có cạnh bằng 3cm (H.9.34).
Hãy xác định tâm, vẽ đường tròn ngoại tiếp hình vuông ABCD và cho biết bán kính của đường tròn đó.
+ Gọi O là giao điểm của AC và BD.
+ Chứng minh \(OA = OB = OC = OD = \frac{{AC}}{2}\) nên chứng minh được đường tròn ngoại tiếp hình vuông ABCD là đường tròn có bán kính bằng nửa độ dài đường chéo trong hình vuông ABCD.
Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên \(OA = OB = OC = OD = \frac{{AC}}{2}\).
Do đó, 4 điểm A, B, C, D cùng thuộc đường tròn đường kính AC.
Vậy đường tròn ngoại tiếp hình vuông ABCD là đường tròn có bán kính bằng nửa độ dài đường chéo trong hình vuông ABCD.
Giải câu hỏi Câu hỏi trang 82 SGK Toán 9
Với điểm A cho trước nằm trên đường tròn (O), có bao nhiêu hình vuông có một đỉnh là A nội tiếp đường tròn (O)?
Với điểm A cho trước nằm trên đường tròn (O), có duy nhất một hình vuông có một đỉnh là A nội tiếp đường tròn (O).
Với điểm A cho trước nằm trên đường tròn (O), có duy nhất một hình vuông có một đỉnh là A nội tiếp đường tròn (O).
Gợi ý giải câu hỏi Luyện tập 2 trang 83SGK Toán 9
Cho hình thoi ABCD có các cạnh bằng 3cm. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, AD. Chứng tỏ rằng tứ giác MNPQ là hình chữ nhật và tìm bán kính đường tròn ngoại tiếp của tứ giác đó.
+ Sử dụng tính chất đường trung bình trong tam giác chứng minh được: MN//AC, PQ//AC, \(MN = PQ = \frac{1}{2}AC\) nên tứ giác MNPQ là hình bình hành.
+ Chứng minh được MQ//BD, MN//AC, \(BD \bot AC\) nên \(MQ \bot MN\) nên \(\widehat {QMN} = {90^o}\).
+ Chứng minh tứ giác MNPQ là hình chữ nhật.
+ Áp dụng định lý Pythagore vào tam giác MNQ vuông tại M để tính NQ, từ đó tính được bán kính đường tròn ngoại tiếp tứ giác MNPQ.
Vì M, N lần lượt là trung điểm của AB, BC nên MN là đường trung bình của tam giác ABC. Do đó, MN//AC, \(MN = \frac{1}{2}AC\) (1).
Vì M, Q lần lượt là trung điểm của AB, AD nên MQ là đường trung bình của tam giác ABD. Do đó, MQ//BD, \(MQ = \frac{1}{2}BD\).
Vì P, Q lần lượt là trung điểm của DC, AD nên PQ là đường trung bình của tam giác ADC. Do đó, PQ//AC, \(PQ = \frac{1}{2}AC\) (2).
Từ (1) và (2) ta có: \(MN = PQ\) và MN//PQ nên tứ giác MNPQ là hình bình hành (3).
Vì MN//AC, \(AC \bot BD\) (do ABCD là hình thoi) nên \(MN \bot BD\)
Vì MQ//BD, \(MN \bot BD\) nên \(MQ \bot MN \Rightarrow \widehat {QMN} = {90^o}\) (4)
Từ (3) và (4) ta có: Tứ giác MNPQ là hình chữ nhật.
Gọi O là giao điểm của AC và BD.
Vì ABCD là hình thoi nên \(AC \bot BD\) tại O và \(OB = \frac{1}{2}BD,OC = \frac{1}{2}AC\). Do đó, \(MN = OC,MQ = OB\).
Áp dụng định lý Pythagore vào tam giác BOC vuông tại O có: \(O{B^2} + O{C^2} = 9\). Do đó, \(M{N^2} + M{Q^2} = 9\)
Áp dụng định lý Pythagore vào tam giác MNQ vuông tại M có:
\(N{Q^2} = M{N^2} + M{Q^2} = 9 \Rightarrow NQ = \sqrt 9 = 3\left( {cm} \right)\)
Vì MNPQ là hình chữ nhật nên đường tròn ngoại tiếp tứ giác MNPQ có bán kính là \(\frac{{NQ}}{2} = \frac{3}{2}\left( {cm} \right)\).
Hướng dẫn giải câu hỏi Thử thách nhỏ 2 trang 83SGK Toán 9
Nếu các hình chữ nhật có chung một đường chéo (ví dụ như hai hình chữ nhật ABCD và AECF trong Hình 9.36) thì các đỉnh của chúng có nằm trên một đường tròn không?
Chứng minh các hình chữ nhật ABCD, AECF nội tiếp đường tròn đường kính AC. Do đó, rút ra kết luận.
Vì ABCD là hình chữ nhật nên ABCD nội tiếp đường tròn đường kính AC.
Vì AECF là hình chữ nhật nên AECF nội tiếp đường tròn đường kính AC.
Do đó, hai hình chữ nhật ABCD, AECF cùng nội tiếp đường tròn đường kính AC.
Suy ra, các hình chữ nhật có chung một đường chéo thì nằm trên một đường tròn.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK