Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Chương 6. Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn Giải mục 1 trang 21, 22 Toán 9 tập 2 - Kết nối tri thức: Tròn nói: Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình \({x^2} - x...

Giải mục 1 trang 21, 22 Toán 9 tập 2 - Kết nối tri thức: Tròn nói: Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình \({x^2} - x...

Phân tích và lời giải HĐ1, HĐ2, LT1, TL mục 1 trang 21, 22 SGK Toán 9 tập 2 - Kết nối tri thức - Bài 20. Định lí Viète và ứng dụng. Nhắc lại công thức tính hai nghiệm \({x_1}, {x_2}\) của phương trình trên...Tròn nói: Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình \({x^2} - x

Câu hỏi:

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 21

Nhắc lại công thức tính hai nghiệm \({x_1},{x_2}\) của phương trình trên.

Hướng dẫn giải :

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\). Tính biệt thức \(\Delta = {b^2} - 4ac\)

+ Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).

+ Nếu \(\Delta = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).

Lời giải chi tiết :

+ Nếu \(\Delta > 0\) thì phương trình có hai nghiệm phân biệt: \({x_1} = \frac{{ - b + \sqrt \Delta }}{{2a}};{x_2} = \frac{{ - b - \sqrt \Delta }}{{2a}}\).

+ Nếu \(\Delta = 0\) thì phương trình có nghiệm kép: \({x_1} = {x_2} = \frac{{ - b}}{{2a}}\).


Câu hỏi:

Hoạt động2

Trả lời câu hỏi Hoạt động 2 trang 21

Từ kết quả HĐ1, hãy tính \({x_1} + {x_2}\) và \({x_1}{x_2}\).

Hướng dẫn giải :

+ Để cộng hai phân số cùng mẫu, ta cộng tử số hai phân số với nhau và giữ nguyên mẫu số.

+ Để nhân hai phân số với nhau, ta nhân tử số với tử số, mẫu số với mẫu số.

Lời giải chi tiết :

Ta có: \({x_1} + {x_2} = \frac{{ - b + \sqrt \Delta }}{{2a}} + \frac{{ - b - \sqrt \Delta }}{{2a}} = \frac{{ - b}}{a}\)

\({x_1}.{x_2} = \frac{{\left( { - b + \sqrt \Delta } \right)\left( { - b - \sqrt \Delta } \right)}}{{2a.2a}} = \frac{{{{\left( { - b} \right)}^2} - \Delta }}{{4{a^2}}} = \frac{{{b^2} - {b^2} + 4ac}}{{4{a^2}}} = \frac{c}{a}\)


Câu hỏi:

Luyện tập1

Trả lời câu hỏi Luyện tập 1 trang 22

Không giải phương trình, hãy tính biệt thức \(\Delta \) (hoặc \(\Delta \)’) để kiểm tra điều kiện có nghiệm, rồi tính tổng và tích các nghiệm của các phương tình bậc hai sau:

a) \(2{x^2} - 7x + 3 = 0\);

b) \(25{x^2} - 20x + 4 = 0\);

c) \(2\sqrt 2 {x^2} - 4 = 0\).

Hướng dẫn giải :

Xét phương trình bậc hai một ẩn \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\).

+ Tính biệt thức \(\Delta = {b^2} - 4ac\) hoặc \(\Delta ‘ = b{‘^2} - ac\) với \(b’ = \frac{b}{2}\).

+ Nếu \(\Delta > 0\) hoặc \(\Delta ‘ > 0\) thì áp dụng định lí Viète để tính tổng và tích các nghiệm \({x_1} + {x_2} = \frac{{ - b}}{a};{x_1}.{x_2} = \frac{c}{a}\).

Lời giải chi tiết :

a) Ta có: \(\Delta = {\left( { - 7} \right)^2} - 4.2.3 = 25 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo định lí Viète ta có: \({x_1} + {x_2} = \frac{7}{2};{x_1}.{x_2} = \frac{3}{2}\).

b) Ta có: \(\Delta ‘ = {\left( { - 10} \right)^2} - 4.25 = 0\) nên phương trình có hai nghiệm trùng nhau \({x_1},{x_2}\).

Theo định lí Viète ta có: \({x_1} + {x_2} = \frac{{20}}{{25}} = \frac{4}{5};{x_1}.{x_2} = \frac{4}{{25}}\).

c) Ta có: \(\Delta ‘ = {0^2} + 4.2\sqrt 2 = 8\sqrt 2 > 0\) nên phương trình có hai nghiệm phân biệt \({x_1},{x_2}\).

Theo định lí Viète ta có: \({x_1} + {x_2} = 0;{x_1}.{x_2} = \frac{{ - 4}}{{2\sqrt 2 }} = - \sqrt 2 \).


Câu hỏi:

Tranh luận

Trả lời câu hỏi Tranh luận trang 22

Tròn nói: Không cần giải, tớ biết ngay tổng và tích hai nghiệm của phương trình \({x^2} - x + 1 = 0\) đều bằng 1. Ý kiến của em thế nào?

Hướng dẫn giải :

Tính biệt thức \(\Delta = {b^2} - 4ac\) để chứng minh phương trình \({x^2} - x + 1 = 0\) vô nghiệm, từ đó đưa ý kiến.

Lời giải chi tiết :

Ta có: \(\Delta = {\left( { - 1} \right)^2} - 4.1.1 = - 3 < 0\) nên phương trình \({x^2} - x + 1 = 0\) vô nghiệm.

Do đó, không tính được tổng và tích các nghiệm của phương trình \({x^2} - x + 1 = 0\).

Vậy bạn Tròn nói sai.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK