Trang chủ Lớp 9 SGK Toán 9 - Kết nối tri thức Chương 1. Phương trình và hệ hai phương trình bậc nhất hai ẩn Giải mục 1 trang 11, 12 Toán 9 Kết nối tri thức tập 1: Cho hệ phương trình (left{ begin{array}{l}x + y = 32x - 3y = 1end{array} right...

Giải mục 1 trang 11, 12 Toán 9 Kết nối tri thức tập 1: Cho hệ phương trình (left{ begin{array}{l}x + y = 32x - 3y = 1end{array} right...

Giải HĐ1, LT1, LT2, LT3, VD1 mục 1 trang 11, 12 SGK Toán 9 tập 1 - Kết nối tri thức Bài 2. Giải hệ hai phương trình bậc nhất hai ẩn. Cho hệ phương trình (left{ begin{array}{l}x + y = 32x - 3y = 1end{array} right. . ) Giải hệ phương trình theo hướng dẫn sau: 1. Từ phương trình thứ nhất...

Câu hỏi:

Hoạt động1

Trả lời câu hỏi Hoạt động 1 trang 11

Cho hệ phương trình \(\left\{ \begin{array}{l}x + y = 3\\2x - 3y = 1\end{array} \right..\) Giải hệ phương trình theo hướng dẫn sau:

1. Từ phương trình thứ nhất, biểu diễn y theo x rồi thế vào phương trình thứ hai để được một phương trình với một ẩn x. Giải phương trình một ẩn đó để tìm giá trị của x.

2. Sử dụng giá trị tìm được của x để tìm giá tị của y rồi viết nghiệm của hệ phương trình đã cho.

Hướng dẫn giải :

a) Từ phương trình thứ nhất ta có \(y = 3 - x\) ta thay vào phương trình thứ 2 ta được \(2x - 3\left( {3 - x} \right) = 1\) từ đó ta giải được \(x = 2\)

b) Thay \(x = 2\) vào phương trình thứ nhất, ta giải được y rồi kết luận nghiệm của hệ phương trình.

Lời giải chi tiết :

1. Ta có \(x + y = 3\) suy ra \(y = 3 - x\) thay vào phương trình \(2x - 3y = 1\) ta được:

\(\begin{array}{l}2x - 3\left( {3 - x} \right) = 1\\2x - 9 + 3x = 1\\5x = 10\\x = 2\end{array}\)

2. Với \(x = 2\) suy ra \(y = 3 - 2 = 1.\) Vậy \(\left( {2;1} \right)\) là nghiệm của hệ phương trình đã cho.


Câu hỏi:

Luyện tập1

Trả lời câu hỏi Luyện tập 1 trang 12

Giải các hệ phương trình sau bằng phương pháp thế:

a) \(\left\{ \begin{array}{l}x - 3y = 2\\ - 2x + 5y = 1;\end{array} \right.\)

b) \(\left\{ \begin{array}{l}4x + y = - 1\\7x + 2y = -3.\end{array} \right.\)

Hướng dẫn giải :

Giải hệ phương trình bằng phương pháp thế:

Từ một phương trình của hệ, biểu diễn x theo y (hoặc y theo x) rồi thế vào phương trình còn lại để được phương trình một ẩn. Giải phương trình vừa nhận được ta được nghiệm của hệ phương trình.

Lời giải chi tiết :

a) Từ phương trình \(x - 3y = 2\) ta có \(x = 2 + 3y.\)

Thế vào phương trình thứ hai của hệ, ta được \( - 2\left( {2 + 3y} \right) + 5y = 1\) hay \( - 4 - y = 1\) suy ra \(y = - 5.\) Từ đó \(x = 2 + 3.\left( { - 5} \right) = - 13.\)

Vậy hệ phương trình có nghiệm là \(\left( { - 13; - 5} \right).\)

b) Từ phương trình \(4x + y = - 1\) ta có \(y = - 1 - 4x.\)

Thế vào phương trình thứ hai của hệ, ta được \(7x + 2\left( { - 1 - 4x} \right) = -3\) hay \( - x - 2 = -3\) suy ra \(x = 1.\) Từ đó \(y = - 1 - 4.1 = -5.\)

Vậy hệ phương trình có nghiệm là \(\left( { 1; -5} \right).\)


Câu hỏi:

Luyện tập2

Trả lời câu hỏi Luyện tập 2 trang 12

Giải hệ phương trình \(\left\{ \begin{array}{l} - 2x + y = 3\\4x - 2y = - 4\end{array} \right.\) bằng phương pháp thế

Hướng dẫn giải :

Giải hệ phương trình bằng phương pháp thế:

Từ một phương trình của hệ, biểu diễn x theo y (hoặc y theo x) rồi thế vào phương trình còn lại để được phương trình một ẩn. Giải phương trình vừa nhận được ta được nghiệm của hệ phương trình.

Lời giải chi tiết :

Ta có \( - 2x + y = 3\) hay \(y = 3 + 2x\), thế vào phương trình thứ hai của hệ ta được

\(\begin{array}{l}4x - 2\left( {3 + 2x} \right) = - 4\\0x - 6 = - 4\end{array}\)

\(0x = 2\) (vô lí) (1)

Do không có giá trị nào của y thỏa mãn hệ thức (1) nên hệ phương trình đã cho vô nghiệm.


Câu hỏi:

Luyện tập3

Trả lời câu hỏi Luyện tập 3 trang 12

Giải hệ phương trình \(\left\{ \begin{array}{l}x + 3y = - 1\\3x + 9y = - 3\end{array} \right.\) bằng phương pháp thế

Hướng dẫn giải :

Giải hệ phương trình bằng phương pháp thế:

Từ một phương trình của hệ, biểu diễn x theo y (hoặc y theo x) rồi thế vào phương trình còn lại để được phương trình một ẩn. Giải phương trình vừa nhận được ta được nghiệm của hệ phương trình.

Lời giải chi tiết :

Ta có \(x + 3y = - 1\) hay \(x = - 1 - 3y\) (2) , thế vào phương trình thứ hai của hệ ta được

\(\begin{array}{l}3\left( { - 1 - 3y} \right) + 9y = - 3\\0y - 3 = - 3\end{array}\)

\(0y = 0\) (luôn đúng) (1)

Ta thấy với mọi \(y \in \mathbb{R}\) thì đều thỏa mãn phương trình (1), ứng với mỗi y ta tìm được một x tương ứng được tính bởi (2) .

Vậy hệ phương trình có nghiệm \(\left( { - 1 - 3y;y} \right)\) với \(y \in \mathbb{R}\) tùy ý.


Câu hỏi:

Vận dụng1

Trả lời câu hỏi Vận dụng 1 trang 12

Xét bài toán trong tình huống mở đầu. Gọi x là số luống trong vườn, y là số cây cải bắp trồng ở mỗi luống \(\left( {x;y \in {\mathbb{N}^*}} \right).\)

a) Lập hệ phương trình đối với hai ẩn x,y.

b) Giải hệ phương trình nhận được ở câu a để tìm câu trả lời cho bài toán.

Hướng dẫn giải :

Tình huống mở đầu: Một mảnh vườn được đánh thành nhiều luống, mỗi luống trồng cùng một số cây bắp cải. Hãy tính số cây bắp cải trồng được trên mảnh vườn đó, biết rằng:

- Nếu tăng thêm 8 luống, nhưng mỗi luống trồng ít đi 3 cây thì số bắp cải của cả vườn ít sẽ ít đi 108 cây;

- Nếu giảm đi 4 luống, nhưng mỗi luống sẽ trồng thêm 2 cây thì số bắp cải cả vườn sẽ tăng thêm 64 cây.

Ba yếu tố ta cần quan tâm trong bài này là số luống (x) , số cây bắp cải trong 1 luống (y) , và tổng số bắp cải trồng được trong vườn và mối liên hệ giữa chúng (tổng số cây bắp cải trong vườn = số luống x số cây bắp cải trong một luống

Lời giải chi tiết :

a) Số cây cải trồng trong vườn là \(xy\)

Nếu tăng thêm 8 luống, tức số luống sẽ là \(x + 8\); số bắp cải trồng trong 1 luống giảm đi 3 tức là số cây trong 1 luống sẽ là \(y - 3\), số bắp cải của cả vườn ít sẽ ít đi 108 cây nên ta có \(\left( {x + 8} \right)\left( {y - 3} \right) + 108 = xy\) suy ra \( - 3x + 8y = - 84.\)

Nếu giảm đi 4 luống, tức số luống sẽ là \(x - 4\), nhưng mỗi luống sẽ trồng thêm 2 cây, tức số cây trong 1 luống sẽ là \(y + 2\) thì số bắp cải cả vườn sẽ tăng thêm 64 cây nên ta có \(\left( {x - 4} \right)\left( {y + 2} \right) - 64 = xy\) suy ra \(2x - 4y = 72.\)

Nên ta có hệ phương trình \(\left\{ \begin{array}{l} - 3x + 8y = - 84\\2x - 4y = 72\end{array} \right.\)

b) Ta có \( - 3x + 8y = - 84\) suy ra \(x = \frac{{84 + 8y}}{3}\) thế vào phương trình thứ hai của hệ ta được \(2.\frac{{84 + 8y}}{3} - 4y = 72\) suy ra \(\frac{4}{3}y = 16\) nên \(y = 12.\)

Với \(y = 12\) nên \(x = \frac{{84 + 8.12}}{3} = 60.\)

Vậy số luống là 60, số cây trong 1 luống là 12 cây.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK