Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Chương VI. Phân thức đại số Câu hỏi trắc nghiệm trang 24 vở thực hành Toán 8 tập 2: Chọn phương án đúng trong mỗi câu sau: Khẳng định nào sau đây là đúng: A...

Câu hỏi trắc nghiệm trang 24 vở thực hành Toán 8 tập 2: Chọn phương án đúng trong mỗi câu sau: Khẳng định nào sau đây là đúng: A...

Ta thấy \({\left( {x + 2} \right)^2} = {\left( { - x - 2} \right)^2}\) để tìm ra được đáp án đúng. Giải và trình bày phương pháp giải Câu 1 trang 24, 2 trang 24, 3 trang 24, 4 trang 24, 5 trang 24 - câu hỏi trắc nghiệm trang 24 vở thực hành Toán 8 tập 2 - Bài tập cuối chương VI. Chọn phương án đúng trong mỗi câu sau...

Chọn phương án đúng trong mỗi câu sau:

Câu hỏi:

Câu 1 trang 24

Khẳng định nào sau đây là đúng:

A. \(\frac{{{{\left( {x - 1} \right)}^2}}}{{x - 2}} = \frac{{{{\left( {1 - x} \right)}^2}}}{{2 - x}}\)

B. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{3{\rm{x}}}}{{{{\left( {x - 2} \right)}^2}}}\)

C. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - 3{\rm{x}}}}{{{{\left( {x - 2} \right)}^2}}}\)

D. \(\frac{{3{\rm{x}}}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{3{\rm{x}}}}{{{{\left( { - x - 2} \right)}^2}}}\)

Hướng dẫn giải :

Ta thấy \({\left( {x + 2} \right)^2} = {\left( { - x - 2} \right)^2}\) để tìm ra được đáp án đúng

Lời giải chi tiết :

Vì \({\left( {x + 2} \right)^2} = {\left( { - x - 2} \right)^2}\)

=> Chọn đáp án D.


Câu hỏi:

Câu 2 trang 24

Khẳng định nào sau đây là sai:

A. \(\frac{{ - 6{\rm{x}}}}{{ - 4{{\rm{x}}^2}{{\left( {x + 2} \right)}^2}}} = \frac{3}{{2{\rm{x}}{{\left( {x + 2} \right)}^2}}}\)

B. \(\frac{{ - 5}}{{ - 2}} = \frac{{10{\rm{x}}}}{{4{\rm{x}}}}\)

C. \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)

D. \(\frac{{ - 6{\rm{x}}}}{{ - 4{{\left( { - x} \right)}^2}{{\left( {x - 2} \right)}^2}}} = \frac{3}{{2{\rm{x}}{{\left( { - x + 2} \right)}^2}}}\)

Hướng dẫn giải :

Xem xét các đáp án tìm ra đáp án vô lý là khẳng định sai

Lời giải chi tiết :

Khẳng định C là khẳng định sai vì:

Nếu: \(\frac{{x + 1}}{{x - 1}} = \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}}\)

\(\begin{array}{l} \Rightarrow \frac{{x + 1}}{{x - 1}} - \frac{{{x^2} + x + 1}}{{{x^2} - x + 1}} = 0\\ \Rightarrow \frac{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right) - \left( {{x^2} + x + 1} \right)\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\\ \Rightarrow \frac{{\left( {{x^3} + 1} \right) - \left( {{x^3} - 1} \right)}}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{2}{{\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}} = 0\end{array}\)

\( \Rightarrow \) vô lý.

=> Chọn đáp án C.


Câu hỏi:

Câu 3 trang 24

Trong hằng đẳng thức \(\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}\), Q là đa thức

A. 4x

B. \(4{{\rm{x}}^2}\)

C. 16x − 4

D. \(16{{\rm{x}}^2} - 4{\rm{x}}\)

Hướng dẫn giải :

Áp dụng hai phân thức bằng nhau để tìm Q.

Lời giải chi tiết :

\(\begin{array}{*{20}{l}}{\frac{{2{{\rm{x}}^2} + 1}}{{4{\rm{x}} - 1}} = \frac{{8{{\rm{x}}^3} + 4{\rm{x}}}}{Q}}\\{ \Rightarrow Q = \frac{{\left( {8{{\rm{x}}^3} + 4{\rm{x}}} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}}\\{Q = \frac{{4{\rm{x}}\left( {2{{\rm{x}}^2} + 1} \right)\left( {4{\rm{x}} - 1} \right)}}{{2{{\rm{x}}^2} + 1}}}\\{Q = 4{\rm{x}}\left( {4{\rm{x}} - 1} \right) = 16{{\rm{x}}^2} - 4{\rm{x}}}\end{array}\)

=> Chọn đáp án D.


Câu hỏi:

Câu 4 trang 24

Nếu \(\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}} = \frac{{b{\rm{x}} + c}}{{xy}}\) thì b + c

A. -4

B. 8

C. 4

D. -10

Hướng dẫn giải :

Ta rút gọn \(\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}}\) rồi tính b + c

Lời giải chi tiết :

\(\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}} = \frac{{b{\rm{x}} + c}}{{xy}}\)

Ta có:

\(\begin{array}{*{20}{l}}\begin{array}{l}\frac{{ - 5{\rm{x}} + 5}}{{2{\rm{x}}y}} - \frac{{ - 9{\rm{x}} - 7}}{{2{\rm{x}}y}} = \frac{{ - 5{\rm{x}} + 5 + 9{\rm{x}} + 7}}{{2{\rm{x}}y}}\\ = \frac{{4{\rm{x}} + 12}}{{2{\rm{x}}y}} = \frac{{4\left( {x + 3} \right)}}{{2{\rm{x}}y}} = \frac{{2(x + 3)}}{{xy}} = \frac{{2x + 6}}{{xy}}\end{array}\\{ \Rightarrow b + c = 2 + 6 = 8}\end{array}\)

=> Chọn đáp án B.


Câu hỏi:

Câu 5 trang 24

Một ngân hàng huy động vốn với mức lãi suất một năm là x%. Để sau một năm, người gửi lãi a đồng thì người đó phải gửi vào ngân hàng số tiền là:

A. \(\frac{{100{\rm{a}}}}{x}\) (đồng)

B. \(\frac{a}{{x + 100}}\) (đồng)

C. \(\frac{a}{{x + 1}}\) (đồng)

D. \(\frac{{100{\rm{a}}}}{{x + 100}}\) (đồng)

Hướng dẫn giải :

Tính số tiền người đó gửi vào ngân hàng rồi đưa ra phương án lựa chọn

Lời giải chi tiết :

Sau một năm, người gửi lãi a đồng thì người đó phải gửi vào ngân hàng số tiền là: \(\frac{{100{\rm{a}}}}{x}\).

=> Chọn đáp án A.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK