Chọn phương án đúng trong mỗi câu sau:
Chọn phương án đúng.
Trong các khẳng định sau, khẳng định nào đúng?
A. Không có tứ giác nào mà không có góc tù.
B. Nếu tứ giác có ba góc nhọn thì góc còn lại là góc tù.
C. Nếu tứ giác có hai góc tù thì hai góc còn lại phải nhọn.
D. Không có tứ giác nào có ba góc tù.
Sử dụng kiến thức về tứ giác.
• Khẳng định A sai vì có thể xảy ra trường hợp tứ giác mà không có góc tù.
Chẳng hạn như hình chữ nhật là tứ giác có bốn góc vuông, tức là hình chữ nhật không có góc tù.
• Khẳng định B.
Tứ giác có ba góc nhọn thì tổng số đo của ba góc bé hơn:
Khi đó, góc còn lại sẽ lớn hơn: \(360^\circ - 270^\circ = 90^\circ .\)
Do đó, góc còn lại là góc tù nên khẳng định B đúng.
• Khẳng định C sai vì có thể xảy ra trường hợp tứ giác có hai góc tù, một góc vuông và một góc nhọn.
Ví dụ: Tứ giác ABCD có \(\widehat A = 100^\circ ;\widehat B = 100^\circ ;\widehat C = 90^\circ ;\widehat D = 70^\circ \).
• Khẳng định D sai vì có thể xảy ra trường hợp tứ giác có ba góc tù.
Ví dụ: Tứ giác MNPQ có \(\widehat M = 100^\circ ;\widehat N = 110^\circ ;\widehat P = 120^\circ ;\widehat Q = 30^\circ \).
Vậy khẳng định B là đúng.
=> Chọn đáp án B.
Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
a) Tứ giác có hai đường chéo bằng nhau là hình bình hành.
b) Tứ giác có hai cặp cạnh bằng nhau là hình bình hành.
c) Tứ giác có ba góc vuông là hình chữ nhật.
d) Tứ giác có ba cạnh bằng nhau là hình thoi.
Sử dụng dấu hiệu nhận biết các hình đã học.
• Khẳng định a) sai vì tứ giác có hai đường chéo bằng nhau thì chưa chắc tứ giác đó là hình bình hành.
• Khẳng định b) sai vì tứ giác có hai cặp cạnh đối bằng nhau là hình bình hành, còn tứ giác có hai cặp cạnh bằng nhau thì chưa khẳng định được là hình bình hành.
• Khẳng định c) đúng.
Tứ giác có ba góc vuông thì số đo của góc còn lại là: \(360^\circ - 3.90^\circ = 90^\circ \).
Khi đó, số đo của góc còn lại cũng là góc vuông.
Do đó, tứ giác đã cho có bốn góc vuông nên tứ giác đó là hình chữ nhật.
• Khẳng định d) sai vì tứ giác có bốn cạnh bằng nhau mới là hình thoi.
Vậy khẳng định c) đúng; các khẳng định a), b), d) sai.
Trong các khẳng định sau, khẳng định nào đúng? Khẳng định nào sai?
a) Tứ giác có hai đường chéo bằng nhau và hai cạnh đối nào cũng bằng nhau là hình chữ nhật.
b) Tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.
c) Tứ giác có hai cạnh song song và hai đường chéo bằng nhau là hình thang cân.
d) Tứ giác có hai cạnh song song và hai cạnh còn lại bằng nhau là hình bình hành.
Sử dụng dấu hiệu nhận biết các hình đã học.
a) Tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.
Hình bình hành có hai đường chéo bằng nhau là hình chữ nhật.
Nên tứ giác có hai đường chéo bằng nhau và hai cạnh đối nào cũng bằng nhau là hình chữ nhật.
Do đó khẳng định a) đúng.
b) Tứ giác có hai cặp cạnh đối diện bằng nhau là hình bình hành.
Nên tứ giác có hai cạnh đối nào cũng bằng nhau là hình bình hành.
Do đó khẳng định b) là đúng.
c) Tứ giác có hai cạnh song song là hình thang.
Hình thang có và hai đường chéo bằng nhau là hình thang cân.
Nên tứ giác có hai cạnh song song và hai đường chéo bằng nhau là hình thang cân.
Do đó khẳng định c) đúng.
d) Tứ giác có hai cạnh song song và hai cạnh còn lại bằng nhau nhưng không song song thì không là hình bình hành.
Do đó khẳng định d) sai.
Vậy các khẳng định a), b), c) đúng; khẳng định d) sai.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK