Chọn phương án đúng trong mỗi câu sau:
Điền cụm từ thích hợp vào chỗ trống.
a) Hình thang cân là ............................................................................................ bằng nhau.
b) Hình thang có ....................................................................................... là hình thang cân.
c) Hai cạnh bên của hình thang cân .....................................................................................
d) Hình thang cân ABCD (AB // CD) có AD = ...................; AC = ..................; \(\widehat A = \).................. ; \(\widehat C = \)..................
- Sử dụng khái niệm hình thang cân: Hình thang cân là hình cân là hình thang có hai góc kề một đáy bằng nhau.
- Dựa vào tính chất của hình thang cân:
+ Định lý 1. Trong hình thang cân, hai cạnh bên bằng nhau.
+ Định lý 2. Trong hình thang cân, hai đường chéo bằng nhau.
- Dựa vào dấu hiệu nhận biết hình thang cân:
+ Định lý 3. Nếu một hình thang có hai đường chéo bằng nhau thì hình thang đó là hình thang cân.
a) Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
b) Hình thang có hai đường chéo bằng nhau là hình thang cân.
c) Hai cạnh bên của hình thang cân bằng nhau.
d) Hình thang cân ABCD (AB // CD) có \(AD = BC;AC = BD;\;\widehat A = \widehat B;\widehat C = \widehat D\).
Cho hình thang ABCD cân (AB // CD) có \(\widehat C = {60^0}\) (H.3.7). Khi đó, số đo \(\widehat {{D_1}}\) bằng:
A. \(60^\circ \)
B. \(80^\circ \)
C. \(120^\circ \)
D. \(100^\circ \)
Sử dụng khái niệm hình thang cân: Hình thang cân là hình cân là hình thang có hai góc kề một đáy bằng nhau và tổng hai góc kề bù bằng \({180^0}\).
Vì ABCD là hình thang cân nên \(\widehat {ACD} = \widehat {BDC} = 60^\circ \).
Do đó \(\widehat {{D_1}} = 180^\circ - \widehat {BDC} = 180^\circ - 60^\circ = 120^\circ .\)
=> Chọn đáp án C.
Cho hình thang ABCD có AB // CD, hai đường chéo AC và BD cắt nhau tại O sao cho OA = OB; OC = OD (H.3.8).
Trong các khẳng định sau, khẳng định sai là
A. BC = AD.
B. ABCD là hình thang cân.
C. AC = BD.
D. Tam giác AOC cân tại O.
- Dựa vào tính chất của hình thang cân:
+ Định lý 1. Trong hình thang cân, hai cạnh bên bằng nhau.
+ Định lý 2. Trong hình thang cân, hai đường chéo bằng nhau.
- Dựa vào dấu hiệu nhận biết hình thang cân:
+ Định lý 3. Nếu một hình thang có hai đường chéo bằng nhau thì hình thang đó là hình thang cân.
Ta có: OA = OB; OC = OD suy ra OA + OC = OB + OD
Khi đó AC = BD nên ABCD là hình thang cân. Do đó B, C đúng.
ABCD là hình thang cân nên hai cạnh bên bằng nhau nên BD = AC. Do đó A đúng.
Vì A, O, C thẳng hàng nên D là khẳng định sai.
=> Chọn đáp án D.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK