Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Chương I. Đa thức Bài 1 trang 13 vở thực hành Toán 8: Cho các biểu thức: \(\frac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\frac{1}{2}{x^2}y;\frac{1}{x}{y^3}; - xy + \sqrt 2 ; -...

Bài 1 trang 13 vở thực hành Toán 8: Cho các biểu thức: \(\frac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\frac{1}{2}{x^2}y;\frac{1}{x}{y^3}; - xy + \sqrt 2 ; -...

Sử dụng khái niệm đơn thức: Đơn thức là biểu thức đại số gồm một số hoặc một biến. Trả lời Giải bài 1 trang 13 vở thực hành Toán 8 - Luyện tập chung trang 13 . Cho các biểu thức:

Đề bài :

Cho các biểu thức:

\(\frac{4}{5}x;\left( {\sqrt 2 - 1} \right)xy; - 3x{y^2};\frac{1}{2}{x^2}y;\frac{1}{x}{y^3}; - xy + \sqrt 2 ; - \frac{3}{2}{x^2}y;\frac{{\sqrt x }}{5}.\)

a) Trong các biểu thức đã cho, biểu thức nào là đơn thức, biểu thức nào không là đơn thức?

b) Hãy chỉ ra hệ số và phần biến của mỗi đơn thức đã cho.

c) Viết tổng tất cả các đơn thức trên để được một đa thức. Xác định bậc của đa thức đó.

Hướng dẫn giải :

a) Sử dụng khái niệm đơn thức: Đơn thức là biểu thức đại số gồm một số hoặc một biến, hoặc có dạng tích của những số và biến.

b) Sử dụng kiến thức về hệ số và phần biến của đơn thức: Phần số trong một đơn thức thu gọn gọi là hệ số; phần còn lại là phần biến của đơn thức đó.

c) Sử dụng khái niệm bậc của đa thức: Bậc của đa thức là bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức đó.

Lời giải chi tiết :

a) Biểu thức \(\frac{1}{x}{y^3}\) không là đơn thức vì chứa biến x ở mẫu số.

Biểu thức \( - xy + \sqrt 2 \) không là đơn thức vì chứa phép cộng với các biến.

Biểu thức \(\frac{{\sqrt x }}{5}\) không là đơn thức vì chứa biến x ở trong căn bậc hai.

Các biểu thức còn lại đều là đơn thức.

b) Các đơn thức là: \(\frac{4}{5}x\) ; \((\sqrt 2 - 1)xy\) ; \( - 3x{y^2}\) ; \(\frac{1}{2}{x^2}y\) ; \( - \frac{3}{2}{x^2}y\) .

- Đơn thức \(\frac{4}{5}x\) có hệ số là \(\frac{4}{5}\) và phần biến là \(x\) .

- Đơn thức \((\sqrt 2 - 1)xy\) có hệ số là \(\sqrt 2 - 1\) và phần biến là \(xy\) .

- Đơn thức \( - 3x{y^2}\) có hệ số là \( - 3\) và phần biến là \(x{y^2}\) .

- Đơn thức \(\frac{1}{2}{x^2}y\) có hệ số là \(\frac{1}{2}\) và phần biến là \({x^2}y\) .

- Đơn thức \( - \frac{3}{2}{x^2}y\) có hệ số là \( - \frac{3}{2}\) và phần biến là \({x^2}y\) .

c) Đa thức tổng của các đơn thức trên là:

\(\begin{array}{l}\frac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy + \left( { - 3x{y^2}} \right) + \frac{1}{2}{x^2}y + \left( { - \frac{3}{2}{x^2}y} \right)\\ = \frac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y.\end{array}\)

Hạng tử có bậc cao nhất là \( - 3x{y^2}\) và \( - {x^2}y\) có bậc là \(1 + 2 = 2 + 1 = 3\) . Vậy bậc của đa thức \(\frac{4}{5}x + \left( {\sqrt 2 - 1} \right)xy - 3x{y^2} - {x^2}y\) là 3.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK