Trang chủ Lớp 8 SBT Toán 8 - Kết nối tri thức Chương 9. Tam giác đồng dạng Bài 9.68 trang 69 SBT Toán 8 - Kết nối tri thức với cuộc sống: Cho tam giác ABC vuông tại A có đường cao AH. Gọi M...

Bài 9.68 trang 69 SBT Toán 8 - Kết nối tri thức với cuộc sống: Cho tam giác ABC vuông tại A có đường cao AH. Gọi M...

Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc) để chứng minh tam giác đồng dạng. Hướng dẫn trả lời bài 9.68 trang 69 sách bài tập toán 8 - Kết nối tri thức với cuộc sống - Bài tập cuối chương IX. Cho tam giác ABC vuông tại A có đường cao AH. Gọi M,...

Đề bài :

Cho tam giác ABC vuông tại A có đường cao AH. Gọi M, N lần lượt là trung điểm của AH, AB. Chứng minh rằng $\Delta CAM\backsim \Delta CBN$ và $\Delta CHM\backsim \Delta CAN$

Hướng dẫn giải :

+ Sử dụng kiến thức về định lý (trường hợp đồng dạng góc – góc) để chứng minh tam giác đồng dạng: Nếu hai góc của tam giác lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng với nhau.

+ Sử dụng kiến thức về định lý (trường hợp cạnh – góc – cạnh) để chứng minh tam giác đồng dạng: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết :

image

Tam giác ABC vuông tại A nên \(\widehat {BAC} = {90^0}\)

Vì AH là đường cao trong tam giác ABC nên \(AH \bot BC\).

Do đó, \(\widehat {AHB} = \widehat {AHC} = {90^0}\)

Tam giác ABC và tam giác HAC có: \(\widehat {BAC} = \widehat {AHC} = {90^0},\widehat C\) chung. Do đó, $\Delta ABC\backsim \Delta HAC\left( g-g \right)$

Suy ra, \(\frac{{BC}}{{CA}} = \frac{{AB}}{{HA}} = \frac{{2BN}}{{2AM}} = \frac{{BN}}{{AM}}\) hay \(\frac{{AC}}{{CB}} = \frac{{AM}}{{BN}}\)

Tam giác CAM và tam giác CNB có:

\(\widehat {CAM} = \widehat B\left( { = {{90}^0} - \widehat {BAH}} \right),\frac{{AC}}{{CB}} = \frac{{AM}}{{BN}}\left( {cmt} \right)\)

Do đó,

Vì $\Delta ABC\backsim \Delta HAC\Rightarrow \frac{AC}{HC}=\frac{AB}{AH}=\frac{2AN}{2HM}=\frac{AN}{HM}$ hay \(\frac{{HC}}{{AC}} = \frac{{HM}}{{AN}}\)

Tam giác CHM và CAN có:\(\widehat {CHM} = \widehat {CAN} = {90^0},\;\frac{{HC}}{{AC}} = \frac{{HM}}{{AN}}\left( {cmt} \right)\)

Do đó, $\Delta CHM\backsim \Delta CAN\left( c-g-c \right)$

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK