Trang chủ Lớp 8 SGK Toán 8 - Kết nối tri thức Chương 9 Tam giác đồng dạng Giải mục 3 trang 88, 89 Toán 8 tập 2 - Kết nối tri thức: Em hãy dự đoán xem tam giác A’B’C’ có đồng dạng với tam giác ABC không?...

Giải mục 3 trang 88, 89 Toán 8 tập 2 - Kết nối tri thức: Em hãy dự đoán xem tam giác A’B’C’ có đồng dạng với tam giác ABC không?...

Giải và trình bày phương pháp giải HĐ3, HĐ4, CH, LT3 , TTN mục 3 trang 88, 89 SGK Toán 8 tập 2 - Kết nối tri thức Bài 34. Ba trường hợp đồng dạng của hai tam giác. Bạn Tròn đang đứng ở vị trí điểm A...Em hãy dự đoán xem tam giác A’B’C’ có đồng dạng với tam giác ABC không?

Câu hỏi:

Hoạt động3

Bạn Tròn đang đứng ở vị trí điểm A bên bờ sông và nhờ anh Pi tính giúp khoảng cách từ chỗ mình đứng đến chân một cột cờ tại điểm C bên kia sông (H.9.20a). Anh Pi lấy một vị trí B sao cho AB=10m, \(\widehat {ABC} = {70^o}{,^{}}\widehat {BAC} = {80^o}\) và vẽ một tam giác A’B’C’ trên giấy với A′B′=2cm, \(\widehat {A’B’C’} = {70^o};\widehat {B’A’C’} = {80^o}\)(H.9.20b)

image

Em hãy dự đoán xem tam giác A’B’C’ có đồng dạng với tam giác ABC không? nếu có thì tỉ số đồng dạng là bao nhiêu

Hướng dẫn giải :

Quan sát hình 9.20 để trả lời câu hỏi.

Lời giải chi tiết :

Tam giác A’B’C’ đồng dạng với tam giác ABC với tỉ số đồng dạng \(\frac{1}{5}\)


Câu hỏi:

Hoạt động4

Nếu ΔABC∽ΔA′B′C′ và anh Pi đo được A′C′=3,76cm thì khoảng cách từ bạn Tròn đến chân cột cờ là bao nhiêu mét?

Hướng dẫn giải :

Dựa vào tỉ số đồng dạng của hai tam giác, tính khoảng cách từ bạn Tròn đến chân cột cờ.

Lời giải chi tiết :

Có ΔA’B’C’ ∽ ΔABC với tỉ số đồng dạng là \(\frac{1}{5}\)

\(\frac{{A’B’}}{{AB}} = \frac{{A’C’}}{{AC}} = \frac{{B’C’}}{{BC}} = \frac{1}{5}\)

mà A′C′=3,76 (m) => AC=18,8 (m)

Khoảng cách từ bạn Tròn đến chân cột cờ là 18,8 m.


Câu hỏi:

Câu hỏi

Những cặp tam giác nào trong hình 9.22 là đồng dạng? Viết đúng kí hiệu đồng dạng

image

Hướng dẫn giải :

Quan sát hình 9.22 và vận dụng trường hợp đồng dạng thứ ba của tam giác

Lời giải chi tiết :

Xét tam giác MPN có: \(\widehat P = {180^o} - \widehat M - \widehat N = {180^o} - {60^o} - {70^o} = {50^o}\)

Các cặp tam giác đồng dạng trong hình 9.22 là: \(\Delta ACB \backsim \Delta DF{\rm{E; }}\Delta {\rm{ACB}} \backsim \Delta {\rm{MP}}N;\Delta DF{\rm{E}} \backsim \Delta MPN\)


Câu hỏi:

Luyện tập3

Cho các điểm A, B, C, D như Hình 9.24. Biết rằng \(\widehat {ABC} = \widehat {A{\rm{D}}B}\). Hãy chứng minh ΔABC∽ΔADB và \(A{B^2} = A{\rm{D}}.AC\)

image

Hướng dẫn giải :

Chứng minh ΔABC ∽ ΔADB (g.g) suy ra tỉ số đồng dạng

Lời giải chi tiết :

Xét tam giác ABC và tam giác ADB có

\(\widehat {ABC} = \widehat {A{\rm{D}}B}\) và \(\widehat A\) chung

=> ΔABC ∽ ΔADB (g.g)

=>\(\frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}\)

=>\(A{B^2} = A{\rm{D}}.AC\)


Câu hỏi:

Thử thách nhỏ

1. Biết rằng ba đường phân giác của tam giác ABC đồng quy tại I, ba đường phân giác của tam giác A’B’C’ đồng quy tại I’. Hãy chứng tỏ rằng nếu \( \widehat {A’I’B’} = \widehat {AIB} \) và \( \widehat {A’I’C’} = \widehat {AIC} \) thì \( \Delta A’B’C’ \backsim \Delta ABC \).

2. Với hai tam giác ABC và A’B’C’ trong phần Tranh luận, nếu thêm giả thiết các góc C và C’ nhọn thì hai tam giác đó có đồng dạng không?

Hướng dẫn giải :

1. Chứng minh tam giác ABC và tam giác A’B’C’ đồng dạng theo trường hợp góc - góc.

2. Tương tự như phần Tranh luận, lấy điểm M trên tia BC sao cho \( \Delta ABM \backsim \Delta A’B’C’ \). Giả sử điểm C không trùng với M và chứng minh điều đó là vô lý => Điểm C phải trùng với M và \( \Delta A’B’C’ \backsim \Delta ABC \)

Lời giải chi tiết :

1. Do tổng các góc trong một tam giác bằng $180^{\circ}$ nên:

$\frac{\widehat{A^{\prime}}+\widehat{B^{\prime}}}{2}=180^{\circ}-\widehat{A^{\prime} I^{\prime} B^{\prime}}=180^{\circ}-\widehat{A I B}=\frac{\widehat{A}+\widehat{B}}{2} \text {. }$

Suy ra $\widehat{A^{\prime}}+\widehat{B^{\prime}}=\widehat{A}+\widehat{B}$. Do đó $\widehat{C^{\prime}}=180^{\circ}-\widehat{A^{\prime}}-\widehat{B^{\prime}}=180^{\circ}-\widehat{A}-\widehat{B}=\widehat{C} \text {. } $

Tương tự, $\widehat{B^{\prime}}=\widehat{B}$. Vậy $\triangle A^{\prime} B^{\prime} C^{\prime}$ và $\triangle A B C$ có: $\widehat{B^{\prime}}=\widehat{B}, \widehat{C^{\prime}}=\widehat{C}$. Do đó $\triangle A^{\prime} B^{\prime} C^{\prime} \backsim \triangle A B C$ (g.g).

2. Nếu góc C và C’ đều nhọn: Lấy điểm $M$ trên tia $B C$ sao cho $\triangle A B M \perp \triangle A^{\prime} B^{\prime} C^{\prime}$. Giả sử điểm $C$ không trùng với $M$. Khi đó: $\triangle A^{\prime} B^{\prime} C^{\prime}$ và $\triangle A B M$ nên $\frac{A^{\prime} C^{\prime}}{A M}=\frac{A^{\prime} B^{\prime}}{A B}=\frac{A^{\prime} C^{\prime}}{A C}$ và kéo theo $A M=A C$, hay $\triangle A M C$ cân tại $A$.

+) Nếu $M$ nằm giữa $B$ và $C$ thì $\widehat{A M B}=180^{\circ}-\widehat{A M C}$

$=180^{\circ}-\widehat{A C M}>90^{\circ}>\widehat{A^{\prime} C^{\prime} M^{\prime}}$ và ta nhận được điều vô lí.

+) Vậy $C$ ở giữa $B$ và $M$ (như hình 9.19). Khi đó $\widehat{A C B}=180^{\circ}-\widehat{A C M}$

$=180^{\circ}-\widehat{A M B}=180^{\circ}-\widehat{C}>90^{\circ}$ và ta nhận được điều vô lí.

Vậy điểm $C$ phải trùng với $M$ và $\triangle A^{\prime} B^{\prime} C^{\prime} \backsim \triangle A B C$.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Kết nối tri thức với cuộc sống

- Bộ sách Kết nối tri thức với cuộc sống được biên soạn cho tất cả học sinh phổ thông trên mọi miền của đất nước, giúp các em hình thành và phát triển những phẩm chất và năng lực cần có đối với người công dân Việt Nam trong thế kỉ XXI. Với thông điệp “Kết nối tri thức với cuộc sống”, bộ SGK này được biên soạn theo mô hình hiện đại, chú trọng vai trò của kiến thức, nhưng kiến thức cần được “kết nối với cuộc sống”, bảo đảm: 1) phù hợp với người học; 2) cập nhật những thành tựu khoa học hiện đại, phù hợp nền tảng văn hóa và thực tiễn Việt Nam; 3) giúp người học vận dụng để giải quyết những vấn đề của đời sống: đời sống cá nhân và xã hội, đời sống tinh thần (đạo đức, giá trị nhân văn) và vật chất (kĩ năng, nghề nghiệp).

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK