Trang chủ Toán Học Lớp 6 tìm số nguyên tố biết  a, p+2 , p+10 là các số nguyên tố  b, p+2 ,p+6 ,p+8 ,p+12 ,...
Câu hỏi :

tìm số nguyên tố biết 

a, p+2 , p+10 là các số nguyên tố 

b, p+2 ,p+6 ,p+8 ,p+12 , p+14 là các số nguyên tố

Lời giải 1 :

Đáp án:

 

Giải thích các bước giải:

 

image
image

Lời giải 2 :

Đáp án:Giải thích các bước giải:

a)  

Ta có:  

+ p=2   =>   p+2 = 2+2 = 4 (hợp số)  (loại)

+ p=3   =>   p+2 = 3+2 = 5  ;   p+10 = 3+10 = 13 (số nguyên tố) (thỏa mãn)

+ p=3k+1 (k thuộc N) => p+2 = 3k+1 + 2 = 3k +3 = 3(k+1) có ít nhất 3 ước => hợp số (loại)

+ p=3k+2 (k thuộc N) => p+10 = 3k+2+10 = 3k+12 = 3(k+4) có ít nhất 3 ước => hợp số (loại)

Vậy số nguyên tố đó là 3 thì thỏa mãn đề ra

b)

Xét p = 2 thì p + 2 = 2 + 2 = 4 là hợp số [loại]  

Xét p = 3 thì p + 6 = 3 + 6 = 9 là hợp số [loại]

Xét p = 5 thì p + 2 ; p + 6 ; p + 8 ; p + 12 ; p + 14 đều là SNT [thỏa mãn]

Xét p > 5 Thì có các dạng :    5k + 1; 5k + 2; 5k + 3; 5k + 4

Nếu p = 5k + 1 thì p + 14 = 5k + 1 + 14 = 5k + 15 là hợp số mà p > 5 nên p = 5k + 1 là hợp số [loại]

Nếu p = 5k + 2 thì p + 8 = 5k + 2 + 8 = 5k + 10 là hợp số [loại]

Nếu p = 5k + 3 thì p + 12 = 5k + 3 + 12 = 5k + 15 là hợp số [loại]

Nếu p = 5k + 4 thì p + 6 = 5k + 6 = 4 + 6 = 5k + 10 là hợp số [loại]

Do đó, trường hợp p > 5 không có số nào thỏa mãn

Vậy p = 5 thỏa mãn đề bài.

minh 2k9bloxfruti

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống, toán học là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ". Hãy kiên trì và không ngừng nỗ lực trong việc chinh phục những con số và công thức này!

Nguồn :

Wikipedia - Bách khoa toàn thư

Tâm sự lớp 6

Lớp 6 - Là năm đầu tiên của cấp trung học cơ sở, chúng ta được sống lại những kỷ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới. Hãy tận dụng cơ hội này để làm quen và hòa nhập thật tốt!

Nguồn :

sưu tập

Copyright © 2024 Giai BT SGK