Trang chủ Toán Học Lớp 12 Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và tam giác ABC cân tại A. Cạnh...
Câu hỏi :

Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và tam giác ABC cân tại A. Cạnh bên SB lần lượt tạo với mặt phẳng đáy, mặt phẳng trung trực của BC các góc bằng 30° và 45°, khoảng cách từ S đến cạnh BC bằng a. Tính thể tích khối chóp S.ABC

Lời giải 1 :

+ Gọi $\text{E}$ là trung điểm của BC.

+ Ta có: $\text{SA} \perp \text{(ABC)}$

$⇒$ $\text{A}$ là hình chiếu của $\text{S}$ lên $\text{(ABC)}$. $⇒\widehat{[\text{SB},\text{(ABC)}]}=\widehat{(\text{SB},\text{AB})}=\widehat{\text{SBA}}=30^\text{o}$

+ Lại có: 

$\text{BC} \perp \text{AE}$ ($\Delta \text{ABC}$ cân tại A)

$\text{BC} \perp \text{SA}$($\text{SA} \perp \text{(ABC)}$)

$⇒\text{BC} \perp \text{SAE}$

$⇒$ Mặt phẳng trung trực BC là $\text{(SAE)}$

+ Chứng minh tương tự, ta có: $⇒$ $\text{E}$ là hình chiếu của $\text{M}$ lên $\text{(SAE)}$.

$⇒\widehat{[\text{SB},\text{(SAE)}]}=\widehat{(\text{SB},\text{SE})}=\widehat{\text{SBE}}=45^\text{o}$

+ Dễ thấy rằng $d_{(S,BC)}=\text{SE}=a$ 

$\Rightarrow \text{SB} = \text{SC} =a \sqrt{2}$

$\Rightarrow \text{BC} = 2a$ 

+ Xét $\Delta \text{SBA}$, ta có: 

$\sin{\widehat{[\text{SB},\text{(SAE)}]}}=\frac{\text{SA}}{\text{SB}}$

$⇒\text{SA}=\frac{a \sqrt{2}}{2}$

+ Xét $\Delta \text{SAE}$, ta có: 

$\text{AE}=\sqrt{\text{SM}^2-\text{SA}^2}=\frac{a \sqrt{2}}{2}$

$⇒V_{S.ABC}=\frac{1}{3} h.S_{\text{đáy}}=\frac{1}{3}. \text{SA}. \frac{1}{2}.\text{AE}.\text{BC}= \frac{a^3}{6}$ 

(haiz, tự dưng phần render LaTeX bị lỗi nè) 

@thomasnguyen364

image

Lời giải 2 :

`{(SBnn(ABC)=B),(SA\bot(ABC)):}`

`->(BC, (ABC))=\hat{SBA}=30^o`

Gọi `M` là trung điểm `BC`

`{(BC\botAM),(BC\botSA):}->BC\bot(SAM)`

`->(SAM)` là mặt phẳng trung trực

`{(SBnn(SAM)=S),(BM\bot(SAM)):}`

`->(SB, (SAM))=\hat{BSM}=45^o`

`SM=d_((S, BC))=a`

`\triangleSBM` vuông tại `M`

`tan45^o=(BM)/(SM)->BM=a`

`->BC=2BM=2a`

`cos45^o=(SM)/(SB)->SB=a\sqrt{2}`

`\triangleSAB` vuông tại `A`

`sin30^o=(SA)/(SB)->SA=(a\sqrt{2})/2`

`\triangleSAM` vuông tại `A`

`AM=\sqrt{SM^2-SA^2}=(a\sqrt{2})/2`

`->V_(S.ABC)=1/3S_(ABC).SA=1/3 . 1/2 .(a\sqrt{2})/2 .2a.(a\sqrt{2})/2=a^3/6`

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống, toán học là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ". Hãy kiên trì và không ngừng nỗ lực trong việc chinh phục những con số và công thức này!

Nguồn :

Wikipedia - Bách khoa toàn thư

Tâm sự lớp 12

Lớp 12 - Năm cuối ở cấp trung học phổ thông, năm học quan trọng nhất trong đời học sinh, trải qua bao năm học tập, bao nhiêu kỳ vọng của người thân xung quanh. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng nề. Hãy tin vào bản thân, mình sẽ làm được và tương lai mới đang chờ đợi chúng ta!

Nguồn :

sưu tập

Copyright © 2024 Giai BT SGK