Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương VI. Hàm số mũ và hàm số lôgarit Mục 1 trang 14, 15 Toán 11 tập 2 - Cùng khám phá: Với mỗi giá trị của x, ta tính được bao nhiêu giá trị của y? y có phải là hàm số của x không?...

Mục 1 trang 14, 15 Toán 11 tập 2 - Cùng khám phá: Với mỗi giá trị của x, ta tính được bao nhiêu giá trị của y? y có phải là hàm số của x không?...

Thay x = 3; 0, 5; \( - \frac{3}{7}\); \(\sqrt 2 \); \( - \sqrt 3 \) vào biểu thức \(y = {2^x}\). Trả lời Hoạt động 1, Luyện tập 1 , Hoạt động 2 , Luyện tập 2 - mục 1 trang 14, 15 SGK Toán 11 tập 2 - Cùng khám phá - Bài 3. Hàm số mũ và hàm số lôgarit. Cho biểu thức \(y = {2^x}\), trong đó x là một số thực lấy giá trị tùy ý...Với mỗi giá trị của x, ta tính được bao nhiêu giá trị của y? y có phải là hàm số của x không?

Câu hỏi:

Hoạt động 1

Cho biểu thức \(y = {2^x}\), trong đó x là một số thực lấy giá trị tùy ý.

a) Hãy tính giá trị của y tương ứng với mỗi giá trị của x được cho trong bảng sau:

image

b) Với mỗi giá trị của x, ta tính được bao nhiêu giá trị của y? y có phải là hàm số của x không? Vì sao?

c) Biểu thức \(y = {\left( { - 3} \right)^x}\) có xác định một hàm số khi x lấy giá trị trong tập số thực \(\mathbb{R}\) không? Vì sao?

Hướng dẫn giải :

a) Thay x = 3; 0,5; \( - \frac{3}{7}\); \(\sqrt 2 \); \( - \sqrt 3 \) vào biểu thức \(y = {2^x}\).

b) Nếu đại lượng y phụ thuộc vào đại lượng thay đổi x sao cho với mỗi giá trị của x ta luôn xác định được chỉ một giá trị tương ứng của y thì y được gọi là hàm số của x và x gọi là biến số.

c) Khi số mũ nằm trong khoảng (0;1) thì cơ số không thể âm.

Lời giải chi tiết :

a)

image

b) Với mỗi giá trị của x chỉ tính được một giá trị của y. y là hàm số của x vì mỗi một giá trị của x thì ta luôn xác định được chỉ một giá trị tương ứng của y.

c) Biểu thức \(y = {\left( { - 3} \right)^x}\) không xác định một hàm số khi x lấy giá trị trong tập số thực \(\mathbb{R}\). Vì khi \(x = \frac{1}{2}\), ta có: \({\left( { - 3} \right)^{\frac{1}{2}}} = \sqrt { - 3} \) (Vô lí)


Câu hỏi:

Luyện tập 1

Trong các hàm số sau, hàm số nào là hàm số mũ, với cơ số bao nhiêu? Vì sao?

a) \(y = {3^{2x}}\)

b) \(y = {\left( { - \pi } \right)^x}\)

c) \(y = {x^{ - 4}}\)

d) \(y = {4^{ - x}}\)

Hướng dẫn giải :

Hàm số \(y = {a^x}\) được gọi là hàm số mũ cơ số a với a là một số thực dương khác 1.

Lời giải chi tiết :

a) \(y = {3^{2x}}\) là hàm số mũ với cơ số bằng 3.

b) \(y = {\left( { - \pi } \right)^x}\) là hàm số mũ với cơ số bằng \(\pi \).

c) \(y = {x^{ - 4}}\) không là hàm số mũ vì cơ số không phải hằng số.

d) \(y = {4^{ - x}}\) là hàm số mũ với cơ số bằng 4.


Câu hỏi:

Hoạt động 2

Cho hàm số \(y = {2^x}\) có đồ thị là (C1) và hàm số \(y = {\left( {\frac{1}{2}} \right)^x}\) có đồ thị (C2).

a) Hoàn thành bảng giá trị sau và biểu diễn trong mặt phẳng Oxy:

image

b) Vẽ đường cong nối các điểm thuộc (C1) (Theo thứ tự hoành độ tăng dần) và một đường cong khác nối các điểm thuộc (C2) (Theo thứ tự hoành độ tăng dần).

Hướng dẫn giải :

Thay x = -3, -2,… , 3 vào \(y = {2^x}\) và \(y = {\left( {\frac{1}{2}} \right)^x}\)

Lời giải chi tiết :

a,

image

b)

image

image


Câu hỏi:

Luyện tập 2

Đồ thị Hình 6.8 cho thấy số lượng hươu cao cổ trên thế giới suy giảm nghiêm trọng trong 30 năm qua (từ năm 1985 đến 2015) (nguồn: https://tuoitre.vn/huou-cao-co-sap-vao-danh-sach-loai-gap-nguy-hiem-20190428162017473.htm). Giả sử rằng số lượng hươu ở đây giảm theo hàm số \(n\left( t \right) = C.{a^t}\).

a) Tìm số lượng hươu vào năm 1985.

b) Tìm hàm số biểu diễn số lượng hươu sau t năm kể từ năm 1985.

c) Dự đoán số lượng hươu vào năm 2025.

image

Hướng dẫn giải :

a) Năm 1985 là t = 0, quan sát đồ thị khi t = 0 thì n bằng bao nhiêu.

b) Số lượng hươu mỗi năm là số lượng hươu năm 1985 trừ đi số lượng hươu giảm được tính theo hàm số \(n\left( t \right) = C.{a^t}\).

c) Kể từ năm 1985 đến 2025 là 40 năm nên t = 40. Thay t = 40 vào hàm số ở phần b.

Lời giải chi tiết :

a) Số lượng hươu năm 1985 là 152 nghìn con.

b) Ta có: \(C.{a^0} = n\left( 0 \right) \Leftrightarrow C = 152\)

\(\begin{array}{l}C.{a^{30}} = n\left( {30} \right)\\ \Leftrightarrow 152.{a^{30}} = 97,5\\ \Leftrightarrow {a^{30}} = \frac{{195}}{{304}}\\ \Leftrightarrow a = \sqrt[{30}]{{\frac{{195}}{{304}}}}\end{array}\)

\( \Rightarrow n\left( t \right) = 152.{\left( {\sqrt[{30}]{{\frac{{195}}{{304}}}}} \right)^t}\)

Hàm số biểu diễn lượng hươu sau t năm kể từ năm 1985 là: \(H\left( t \right) = 152 - 152.{\left( {\sqrt[{30}]{{\frac{{195}}{{304}}}}} \right)^t}\)

c) Kể từ năm 1985 đến 2025 là 40 năm nên t = 40

Số lượng hươu vào năm 2025 là: \(H\left( {40} \right) = 152 - 152.{\left( {\sqrt[{30}]{{\frac{{195}}{{304}}}}} \right)^{40}} \approx 67,914\) (nghìn con)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK