Trang chủ Lớp 11 SGK Toán 11 - Cùng khám phá Chương VI. Hàm số mũ và hàm số lôgarit Mục 2 trang 22, 23 Toán 11 tập 2 - Cùng khám phá: Ta biết: Với (C1) là đồ thị của hàm số y = f(x) và (C2) là đồ thị của hàm...

Mục 2 trang 22, 23 Toán 11 tập 2 - Cùng khám phá: Ta biết: Với (C1) là đồ thị của hàm số y = f(x) và (C2) là đồ thị của hàm...

Quan sát hình vẽ. Gợi ý giải Hoạt động 2 , Luyện tập 2 - mục 2 trang 22, 23 SGK Toán 11 tập 2 - Cùng khám phá - Bài 4. Phương trình và bất phương trình mũ. Ta biết: Với (C1) là đồ thị của hàm số y = f(x) và (C2) là đồ thị của hàm số y = g(x)...

Câu hỏi:

Hoạt động 2

Ta biết: Với (C1) là đồ thị của hàm số y = f(x) và (C2) là đồ thị của hàm số y = g(x) thì tập hợp giá trị của x để (C1) nằm phía trên (C2) là tập nghiệm của bất phương trình f(x) > g(x).

Quan sát các đồ thị (Hình 6.21 và 6.22) trong Hoạt động 1 và trong mỗi trường hợp, hãy tìm các tập nghiệm của bất phương trình ax > b:

a) Khi b > 0;

b) Khi b ≤ 0.

image

Hướng dẫn giải :

Quan sát hình vẽ.

Lời giải chi tiết :

a) Khi b > 0:

a > 1: ax > b \( \Leftrightarrow x > {\log _a}b\)

0 x > b \( \Leftrightarrow x

b) Khi b ≤ 0 thì bất phương trình nghiệm đúng với mọi \(x \in \mathbb{R}\).


Câu hỏi:

Luyện tập 2

Giải các bất phương trình sau:

a) \({2^{x + 1}} > {2^{3x + 5}}\)

b) \({\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \le \frac{9}{7}\)

Hướng dẫn giải :

Khi a > 1: \({a^{A\left( x \right)}} > {a^{B\left( x \right)}} \Leftrightarrow A\left( x \right) > B\left( x \right)\)

Khi 0 {a^{B\left( x \right)}} \Leftrightarrow A\left( x \right)

Lời giải chi tiết :

a)

\(\begin{array}{l}{2^{x + 1}} > {2^{3x + 5}}\\ \Leftrightarrow x + 1 > 3x + 5\\ \Leftrightarrow - 2x > 4\\ \Leftrightarrow x

Vậy tập nghiệm của bất phương trình đã cho là \(\left( { - \infty ; - 2} \right)\).

b)

\(\begin{array}{l}{\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \le \frac{9}{7}\\ \Leftrightarrow {\left( {\frac{7}{9}} \right)^{2{x^2} - 3x}} \le {\left( {\frac{7}{9}} \right)^{ - 1}}\\ \Leftrightarrow 2{x^2} - 3x \ge - 1\\ \Leftrightarrow 2{x^2} - 3x + 1 \ge 0\\ \Leftrightarrow \left[ \begin{array}{l}x \ge 1\\x \le \frac{1}{2}\end{array} \right.\end{array}\)

Vậy tập nghiệm của bất phương trình đã cho là \(\left( { - \infty ;\frac{1}{2}} \right) \cup \left( {1; + \infty } \right)\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK