Trong mặt phẳng (P), cho hình bình hành ABCD. Lấy S nằm ngoài mặt phẳng (P). Lấy M, N lần lượt là các điểm nằm trên các cạnh SA, SC.
a) Chứng minh rằng đường thẳng MN nằm trong mặt phẳng (SAC).
b) Giả sử MN và AC cắt nhau tại I, chứng minh I là điểm chung của hai mặt phẳng (BMN) và (ABC), từ đó suy ra giao tuyển của hai mặt phẳng (BMN) và (ABC).
a) Đường thẳng có 2 điểm phân biệt nằm trong mặt phẳng thì đường thẳng đó cũng thuộc vào mặt phẳng.
b) Nếu 2 điểm A, B cùng thuộc 2 mặt phẳng phân biệt (P) và (Q) thì AB là giao tuyến của (P) và (Q).
a)
\(\left\{ \begin{array}{l}M \in SA\\N \in SC\end{array} \right. \Rightarrow MN \subset \left( {SAC} \right)\)
b)
\(\begin{array}{l}I = MN \cap AC\\\left\{ \begin{array}{l}MN \subset \left( {BMN} \right)\\AC \subset \left( {ABC} \right)\end{array} \right.\end{array}\)
Nên I là điểm chung của (BMN) và (ABC)
\( \Rightarrow BI = \left( {BMN} \right) \cap \left( {ABC} \right)\).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK