Tính sin và côsin của góc lượng giác có số đo radian bằng x trong các trường hợp sau:
\(x = \frac{\pi }{2};x = - \frac{\pi }{4};x = \frac{{11\pi }}{3};x = - 2,5.\)
Sử dụng máy tính cầm tay tính \(\sin \frac{\pi }{2},\cos \frac{\pi }{2},\sin \left( { - \frac{\pi }{4}} \right),\cos \left( { - \frac{\pi }{4}} \right),\sin \frac{{11\pi }}{3},\cos \frac{{11\pi }}{3},\sin \left( { - 2,5} \right),\cos \left( { - 2,5} \right)\).
\(\begin{array}{l}\cos \frac{\pi }{2} = 0,\sin \frac{\pi }{2} = 1\\\cos \frac{{ - \pi }}{4} = \frac{{\sqrt 2 }}{2},\sin \frac{{ - \pi }}{4} = - \frac{{\sqrt 2 }}{2}\\\cos \frac{{11\pi }}{3} = \frac{1}{2},\sin \frac{{11\pi }}{3} = - \frac{{\sqrt 3 }}{2}\\\cos \left( { - 2,5} \right) \approx - 0,8,\sin \left( { - 2,5} \right) = - 0,6\end{array}\)
Tính giá trị của hàm số \(y = \sin x\) và hàm số \(y = \cos x\) khi \(x = \frac{{3\pi }}{2};x = - \frac{{11\pi }}{4};x = \frac{{14\pi }}{3}.\)
Sử dụng máy tính cầm tay tính \(\sin \frac{{3\pi }}{2},\cos \frac{{3\pi }}{2},\sin \left( { - \frac{{11\pi }}{4}} \right),\cos \left( { - \frac{{11\pi }}{4}} \right),\sin \frac{{14\pi }}{3},\cos \frac{{14\pi }}{3}\).
\(\begin{array}{l}y = \cos \frac{{3\pi }}{2} = 0,y = \sin \frac{{3\pi }}{2} = - 1\\y = \cos \frac{{ - 11\pi }}{4} = - \frac{{\sqrt 2 }}{2},y = \sin \frac{{ - 11\pi }}{4} = - \frac{{\sqrt 2 }}{2}\\y = \cos \frac{{14\pi }}{3} = - \frac{1}{2},y = \sin \frac{{14\pi }}{3} = \frac{{\sqrt 3 }}{2}\end{array}\)
Phương trình li độ của một vật dao động điều hòa có dạng: \(x = - 6\cos \left( {\pi t + \frac{\pi }{6}} \right)\), trong đó x (cm) là li độ của vật (hay độ dời của vật so với vị trí cân bằng) tại thời điểm t (giây). Tính li độ của vật tại thời điểm t = 3 giây.
Thay t = 3 vào phương trình li độ.
Thay t = 3 vào phương trình li độ, ta có:
\(x = - 6\cos \left( {\pi .3 + \frac{\pi }{6}} \right) = - 6\cos \left( {\frac{{19\pi }}{6}} \right) = 3\sqrt 3 \)
Vậy li độ tại thời điểm t = 3 giây là \(3\sqrt 3 \)(cm).
Tính tang và côtang của góc lượng giác có số đo bằng x trong các trường hợp sau:
\(x = \frac{{7\pi }}{3};x = - \frac{{5\pi }}{4};x = \frac{{11\pi }}{6};x = - 3.\)
Sử dụng máy tính cầm tay tính \(\tan \frac{{7\pi }}{3},\cot \frac{{7\pi }}{3},\tan \left( { - \frac{{5\pi }}{4}} \right),\cot \left( { - \frac{{5\pi }}{4}} \right),\tan \frac{{11\pi }}{6},\cot \frac{{11\pi }}{6},\tan \left( { - 3} \right),\cot \left( { - 3} \right)\).
\(\begin{array}{l}\tan \frac{{7\pi }}{3} = \sqrt 3 ,\cot \frac{{7\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{5\pi }}{4}} \right) = - 1,\cot \left( { - \frac{{5\pi }}{4}} \right) = - 1\\\tan \frac{{11\pi }}{6} = - \frac{{\sqrt 3 }}{3},\cot \frac{{11\pi }}{6} = - \sqrt 3 \\\tan \left( { - 3} \right) \approx 0,14;\cot \left( { - 3} \right) \approx 7,02\end{array}\)
Tính giá trị của hàm số \(y = \tan x\) và hàm số \(y = \cot x\) khi \(x = \frac{{13\pi }}{3};x = - \frac{{9\pi }}{4};x = \frac{{19\pi }}{6}.\)
Sử dụng máy tính cầm tay tính \(\tan \frac{{13\pi }}{3},\cot \frac{{13\pi }}{3},\tan \left( { - \frac{{9\pi }}{4}} \right),\cot \left( { - \frac{{9\pi }}{4}} \right),\tan \frac{{19\pi }}{6},\cot \frac{{19\pi }}{6}\).
\(\begin{array}{l}\tan \frac{{13\pi }}{3} = \sqrt 3 ,\cot \frac{{13\pi }}{3} = \frac{1}{{\sqrt 3 }}\\\tan \left( { - \frac{{9\pi }}{4}} \right) = - 1,\cot \left( { - \frac{{9\pi }}{4}} \right) = - 1\\\tan \frac{{19\pi }}{6} = \frac{{\sqrt 3 }}{3},\cot \frac{{19\pi }}{6} = \sqrt 3 \end{array}\)
a) So sánh các giá trị \(\sin x\) và \(\sin \left( { - x} \right)\), \(\cos x\) và \(\cos \left( { - x} \right)\).
b) So sánh các giá trị \(\tan x\) và \(\tan \left( { - x} \right)\) khi \(x \ne \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right)\).
c) So sánh các giá trị \(\cot x\) và \(\cot \left( { - x} \right)\) khi \(x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).
Áp dụng công thức lượng giác giữa 2 góc đối nhau.
a)
\(\begin{array}{l}\sin \left( { - x} \right) = - \sin x\\\cos \left( { - x} \right) = \cos x\end{array}\)
b) \(\tan \left( { - x} \right) = - \tan x\)
c) \(\cot \left( { - x} \right) = \cot x\)
Xác định tính chẵn, lẻ của hàm số \(y = f\left( x \right) = \sin x - \tan x.\)
So sánh\(f\left( { - x} \right)\) và \(f\left( x \right)\).
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow - x \in D\end{array}\)
\(f\left( { - x} \right) = \sin \left( { - x} \right) - \tan \left( { - x} \right) = - \sin x + \tan x = - \left( {\sin x - \tan x} \right) = - f\left( x \right)\)
Vậy hàm số đã cho là hàm số lẻ.
Tìm một số \(T \ne 0\) sao cho \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số sau:
a) \(f\left( x \right) = \sin x;\)
b) \(f\left( x \right) = \cos x;\)
c) \(f\left( x \right) = \tan x;\)
d) \(f\left( x \right) = \cot x.\)
Dựa vào tính chất
\(\begin{array}{l}\sin \left( {\alpha + k2\pi } \right) = \sin \alpha \\\cos \left( {\alpha + k2\pi } \right) = \cos \alpha \\\tan \left( {\alpha + k\pi } \right) = \tan \alpha \\\cot \left( {\alpha + k\pi } \right) = \cot \alpha \end{array}\)
Tìm ra T, từ đó chứng minh \(f\left( {x + T} \right) = f\left( x \right)\) với mọi x thuộc tập xác định của mỗi hàm số.
a)
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi \in D,x - 2\pi \in D\\f\left( {x + 2\pi } \right) = \sin \left( {x + 2\pi } \right) = \sin x = f\left( x \right)\end{array}\)
b)
\(\begin{array}{l}D = \mathbb{R}\\\forall x \in D \Rightarrow x + 2\pi \in D,x - 2\pi \in D\\f\left( {x + 2\pi } \right) = \cos \left( {x + 2\pi } \right) = \cos x = f\left( x \right)\end{array}\)
c)
\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = \tan \left( {x + \pi } \right) = \tan x = f\left( x \right)\end{array}\)
d)
\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = \cot \left( {x + \pi } \right) = \cot x = f\left( x \right)\end{array}\)
Chứng minh hàm số \(y = f\left( x \right) = 1 - \cot x\) là hàm số tuần hoàn.
Chỉ ra \(f\left( {x + T} \right) = f\left( x \right)\) với T khác 0 là chu kì tuần hoàn.
\(\begin{array}{l}D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,k \in \mathbb{Z}} \right\}\\\forall x \in D \Rightarrow x + \pi \in D,x - \pi \in D\\f\left( {x + \pi } \right) = 1 - \cot \left( {x + \pi } \right) = 1 - \cot x = f\left( x \right)\end{array}\)
Vậy hàm số đã cho là hàm số tuần hoàn.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK