Trang chủ Lớp 9 SGK Toán 9 - Cùng khám phá Chương 5. Đường tròn Bài 5.5 trang 102 Toán 9 Cùng khám phá tập 1: Trong Hình 5.14, cho hai đường tròn cùng tâm O, các điểm A, B, C...

Bài 5.5 trang 102 Toán 9 Cùng khám phá tập 1: Trong Hình 5.14, cho hai đường tròn cùng tâm O, các điểm A, B, C...

Xét đường tròn (O, OC) có: \(OC = OD\) nên tam giác COD cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến. Phân tích và lời giải bài tập 5.5 trang 102 SGK Toán 9 tập 1 - Cùng khám phá Bài 1. Đường tròn. Trong Hình 5.14, cho hai đường tròn cùng tâm O, các điểm A, B, C, D thẳng hàng và \(OH \bot AB\left( {H \in AB} \right)\). a) Chứng minh rằng H là trung điểm của AB và CD...

Đề bài :

Trong Hình 5.14, cho hai đường tròn cùng tâm O, các điểm A, B, C, D thẳng hàng và \(OH \bot AB\left( {H \in AB} \right)\).

a) Chứng minh rằng H là trung điểm của AB và CD.

b) Chứng minh rằng \(AC = BD\).

c) Biết bán kính đường tròn lớn là 10cm, \(CD = 16cm\) và \(AB = 8cm\). Tính bán kính đường tròn nhỏ.

image

Hướng dẫn giải :

a) Xét đường tròn (O, OC) có: \(OC = OD\) nên tam giác COD cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến. Suy ra, H là trung điểm của CD.

Xét (O, OA) có: \(OA = OB\) nên tam giác OAB cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến. Suy ra, H là trung điểm của AB.

b) Theo a ta có: \(CH = HD\), \(AH = HB\) nên \(CH - HA = HD - HB\), suy ra \(AC = BD\).

c) Tam giác HOD vuông tại H nên \(O{H^2} + H{D^2} = O{D^2}\)

Tam giác HOB vuông tại H nên \(O{B^2} = O{H^2} + H{B^2}\), từ đó tính được bán kính đường tròn nhỏ.

Lời giải chi tiết :

image

a) Xét đường tròn (O, OC) có: \(OC = OD\) nên tam giác COD cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến. Suy ra, H là trung điểm của CD. Do đó, \(CH = HD\).

Xét (O, OA) có: \(OA = OB\) nên tam giác OAB cân tại O. Do đó, OH là đường cao đồng thời là đường trung tuyến. Suy ra, H là trung điểm của AB. Do đó, \(AH = HB\).

b) Theo a ta có: \(CH = HD\), \(AH = HB\) nên \(CH - HA = HD - HB\), suy ra \(AC = BD\).

c) Ta có:

\(\begin{array}{l}HD = \frac{1}{2}CD = \frac{1}{2}.16 = 8\left( {cm} \right),\\HB = \frac{1}{2}AB = \frac{1}{2}.8 = 4\left( {cm} \right)\end{array}\).

Tam giác HOD vuông tại H nên

\(O{H^2} + H{D^2} = O{D^2}\) (định lí Pythagore),

suy ra \(O{H^2}\) \( = O{D^2} - H{D^2}\) \( = {10^2} - {8^2}\) \( = 36\left( {cm} \right)\).

Tam giác HOB vuông tại H nên

\(O{B^2} = O{H^2} + H{B^2} = 36 + {4^2} = 52\) (định lí Pythagore),

suy ra \(OB = 2\sqrt {13} cm\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cùng khám phá

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK