Xác định \(a\) và \(b\) để đồ thị của hàm số \(y = ax + b\) đi qua hai điểm \(A\) và \(B\) trong mỗi trường hợp sau:
a) \(A\left( {3; - 2} \right)\) và \(B\left( { - 3;1} \right)\)
b) \(A\left( {0;2} \right)\) và \(B\left( {\sqrt 3 ;2} \right)\)
+ Lập phương trình đi qua từng điểm;
+ Suy ra được hệ phương trình;
+ Áp dụng cách giải hệ phương trình để tìm giá trị của \(a\) và \(b\).
a) Do đồ thị hàm số \(y = ax + b\) đi qua điểm \(A\left( {3; - 2} \right)\), ta có: \(3a + b = - 2\).
Do đồ thị hàm số \(y = ax + b\) đi qua điểm \(B\left( { - 3;1} \right)\), ta có: \( - 3a + b = 1\)
Ta có hệ phương trình: \(\left\{ \begin{array}{l}3a + b = - 2\\ - 3a + b = 1\end{array} \right.\).
Do hệ số của \(a\) trong hai phương trình đối nhau nên cộng từng vế hai phương trình của hệ, ta được:
\(\begin{array}{l}\left( {3a + b} \right) + \left( { - 3a + b} \right) = - 2 + 1\\3a + b - 3a + b = - 1\\2b = - 1\\b = \frac{{ - 1}}{2}.\end{array}\)
Thay \(b = \frac{{ - 1}}{2}\) vào phương trình \(3a + b = - 2\), ta có:
\(\begin{array}{l}3a + \frac{{ - 1}}{2} = - 2\\3a = - \frac{3}{2}\\a = - \frac{1}{2}\end{array}\)
Vậy \(a = - \frac{1}{2},b = - \frac{1}{2}\) thì đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A,B\) đã cho.
b) Do đồ thị hàm số \(y = ax + b\) đi qua điểm \(A\left( {0;2} \right)\), ta có: \(b = 2\).
Do đồ thị hàm số \(y = ax + b\) đi qua điểm \(B\left( {\sqrt 3 ;2} \right)\), ta có: \(\sqrt 3 a + b = 2\)
Thay \(b = 2\) vào phương trình \(\sqrt 3 a + b = 2\), ta có:
\(\begin{array}{l}\sqrt 3 a + 2 = 2\\\sqrt 3 a = 0\\a = 0.\end{array}\)
Vậy \(a = 0,b = 2\) thì đồ thị hàm số \(y = ax + b\) đi qua hai điểm \(A,B\) đã cho.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK