Một bác nông dân có ba tấm lưới thép B40, mỗi tấm dài a (m) và muốn rào một mảnh vườn dọc bờ sông có dạng hình thang cân ABCD (bờ sông là đường thẳng CD không phải rào). Hỏi bác đó có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu mét vuông?
Phân tích đề bài
Tìm các mối quan hệ trong bài
Lập phương trình và giải
Giả sử chiều dài của hai cạnh đáy của hình thang cân lần lượt là \(x\) và \(2x\), và chiều dài của cạnh bên là \(a - 3x\). Do đó, chiều cao của hình thang cân là: \(h = \sqrt {{{(a - 3x)}^2} - {x^2}} \)
Diện tích của hình thang cân là:
\(S = \frac{{\left( {x + 2x} \right)h}}{2} = \frac{{3x\sqrt {{{(a - 3x)}^2} - {x^2}} }}{2}\)
Để tìm giá trị lớn nhất của S, ta cần tìm giá trị x sao cho đạo hàm của S theo x bằng 0. Đạo hàm của S theo x được tính bằng công thức sau:
\(S’ = \frac{{dS}}{{dx}} = \frac{{3x\left( {8x - 9} \right)}}{{2\sqrt { - {x^2} + {{(a - 3x)}^2}} }} + \frac{{3\sqrt { - {x^2} + {{(a - 3x)}^2}} }}{2}\).
Giải phương trình \(S’ = 0\)
Sau khi giải, thay x vào công thức diện tích S, ta tìm được diện tích lớn nhất của mảnh vườn có thể rào được là \({S_{max}} = \frac{{{a^2}\sqrt 3 }}{4}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối của thời học sinh, với nhiều kỳ vọng và áp lực. Đừng quá lo lắng, hãy tự tin và cố gắng hết sức mình. Thành công sẽ đến với những ai nỗ lực không ngừng!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK