Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương VII. Đạo hàm Bài 17 trang 73 SBT Toán 11 - Cánh diều: Tính đạo hàm của mỗi hàm số sau tại điểm \({x_0} = 2\)...

Bài 17 trang 73 SBT Toán 11 - Cánh diều: Tính đạo hàm của mỗi hàm số sau tại điểm \({x_0} = 2\)...

Sử dụng các quy tắc tính đạo hàm của hàm hợp. Phân tích và giải - Bài 17 trang 73 sách bài tập toán 11 - Cánh diều - Bài 2. Các quy tắc tính đạo hàm. Tính đạo hàm của mỗi hàm số sau tại điểm \({x_0} = 2\)...

Đề bài :

Tính đạo hàm của mỗi hàm số sau tại điểm \({x_0} = 2\):

a) \(f\left( x \right) = {e^{{x^2} + 2x}};\)

b) \(g\left( x \right) = \frac{{{3^x}}}{{{2^x}}};\)

c) \(h\left( x \right) = {2^x}{.3^{x + 2}};\)

d) \(k\left( x \right) = {\log _3}\left( {{x^2} - x} \right).\)

Hướng dẫn giải :

Sử dụng các quy tắc tính đạo hàm của hàm hợp.

Lời giải chi tiết :

a) \({f’}\left( x \right) = {\left( {{e^{{x^2} + 2x}}} \right)^\prime } = {\left( {{x^2} + 2x} \right)^\prime }.{e^{{x^2} + 2x}} = \left( {2x + 2} \right).{e^{{x^2} + 2x}}.\)

Đạo hàm của hàm số tại điểm \({x_0} = 2\): \(f’\left( 2 \right) = \left( {2.2 + 2} \right).{e^{{2^2} + 2.2}} = 6.{e^8}.\)

b) \(g’\left( x \right) = {\left( {\frac{{{3^x}}}{{{2^x}}}} \right)^\prime } = {\left( {{{\left( {\frac{3}{2}} \right)}^x}} \right)^\prime } = {\left( {\frac{3}{2}} \right)^x}.\ln \frac{3}{2}.\)

Đạo hàm của hàm số tại điểm \({x_0} = 2\): \(g’\left( 2 \right) = {\left( {\frac{3}{2}} \right)^2}.\ln \frac{3}{2} = \frac{9}{4}.\ln \frac{3}{2}.\)

c) \(h’\left( x \right) = {\left( {{2^x}{{.3}^{x + 2}}} \right)^\prime } = {\left( {{{\left( {{2^x}} \right)}^\prime }{{.3}^{x + 2}} + {{\left( {{3^{x + 2}}} \right)}^\prime }{{.2}^x}} \right)^\prime } = {2^x}ln{2.3^{x + 2}} + {3^{x + 2}}.ln{3.2^x}\)

\( = {2^x}{.3^{x + 2}}\left( {\ln 2 + \ln 3} \right).\)

Đạo hàm của hàm số tại điểm \({x_0} = 2\):

\(h’\left( 2 \right) = {2^2}{.3^{2 + 2}}\left( {\ln 2 + \ln 3} \right) = 324.\left( {\ln 2 + \ln 3} \right).\)

d) \(k’\left( x \right) = {\left( {{{\log }_3}\left( {{x^2} - x} \right)} \right)^\prime } = \frac{{{{\left( {{x^2} - x} \right)}^\prime }}}{{ln3.{{\log }_3}\left( {{x^2} - x} \right)}} = \frac{{2x - 1}}{{ln3.{{\log }_3}\left( {{x^2} - x} \right)}}.\)

Đạo hàm của hàm số tại điểm \({x_0} = 2\):

\(k’\left( 2 \right) = \frac{{2.2 - 1}}{{\ln 3.{{\log }_3}\left( {{2^2} - 2} \right)}} = \frac{3}{{\ln 3.{{\log }_3}2}} = \frac{3}{{\ln 2}}.\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK