Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương IV. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song Bài 7 trang 95 SBT Toán 11 - Cánh diều: Cho hình chóp \(S. ABCD\) có đáy là hình bình hành. Gọi \(M, {\rm{ }}N...

Bài 7 trang 95 SBT Toán 11 - Cánh diều: Cho hình chóp \(S. ABCD\) có đáy là hình bình hành. Gọi \(M, {\rm{ }}N...

Để xác định giao điểm của đường thẳng \(NP\) và mặt phẳng \(\left( {SAB} \right)\), ta cần chọn một đường thẳng trong mặt phẳng \(\left( {SAB} \right)\). Phân tích và giải - Bài 7 trang 95 sách bài tập toán 11 - Cánh diều - Bài 1. Đường thẳng và mặt phằng trong không gian. Cho hình chóp \(S. ABCD\) có đáy là hình bình hành. Gọi \(M, {\rm{ }}N, {\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA, {\rm{ }}BC, {\rm{ }}CD\)...

Đề bài :

Cho hình chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,{\rm{ }}N,{\rm{ }}P\) lần lượt là trung điểm của các cạnh \(SA,{\rm{ }}BC,{\rm{ }}CD\).

a) Xác định giao điểm của đường thẳng \(NP\) với mặt phẳng \(\left( {SAB} \right)\).

b) Xác định giao tuyến của mặt phẳng \(\left( {MNP} \right)\) với các mặt phẳng \(\left( {SAB} \right),{\rm{ }}\left( {SAD} \right),{\rm{ }}\left( {SBC} \right){\rm{, }}\left( {SCD} \right)\).

Hướng dẫn giải :

a) Để xác định giao điểm của đường thẳng \(NP\) và mặt phẳng \(\left( {SAB} \right)\), ta cần chọn một đường thẳng trong mặt phẳng \(\left( {SAB} \right)\), rồi tìm giao điểm của đường thẳng đó với đường thẳng \(NP\).

b) Để xác định giao tuyến của hai mặt phẳng, ta cần tìm hai điểm chung của hai mặt phẳng đó.

Lời giải chi tiết :

image

a) Xét mặt phẳng \(\left( {ABCD} \right)\), gọi \(E\) là giao điểm của \(AB\) và \(NP\).

Ta có \(\left\{ E \right\} = AB \cap NP\), mà \(NP \subset \left( {MNP} \right)\) nên \(\left\{ E \right\} = \left( {SAB} \right) \cap NP\).

b)

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SAB} \right)\):

Ta có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAB} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAB} \right) \cap \left( {MNP} \right)\).

Mặt khác, theo câu a, ta có \(\left\{ \begin{array}{l}E \in AB \subset \left( {SAB} \right)\\E \in NP \subset \left( {MNP} \right)\end{array} \right. \Rightarrow E \in \left( {SAB} \right) \cap \left( {MNP} \right)\).

Từ đó, giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(ME\).

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SAD} \right)\):

Trên mặt phẳng \(\left( {ABCD} \right)\), gọi \(F\) là giao điểm của \(AD\) và \(NP\).

Vì \(F\) là giao điểm của \(AD\) và \(NP\), ta suy ra \(\left\{ \begin{array}{l}F \in AD\\F \in NP\end{array} \right.\).

Do \(AD \subset \left( {SAD} \right)\), \(NP \subset \left( {MNP} \right)\) nên ta có \(\left\{ \begin{array}{l}F \in \left( {SAD} \right)\\F \in \left( {MNP} \right)\end{array} \right. \Rightarrow F \in \left( {SAD} \right) \cap \left( {MNP} \right)\).

Hơn nữa, ta cũng có \(\left\{ \begin{array}{l}M \in SA \subset \left( {SAD} \right)\\M \in \left( {MNP} \right)\end{array} \right. \Rightarrow M \in \left( {SAD} \right) \cap \left( {MNP} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(MF\).

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SBC} \right)\):

Ta có \(ME\) là giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow ME \subset \left( {SAB} \right)\).

Trên mặt phẳng \(\left( {SAB} \right)\), gọi \(\left\{ K \right\} = ME \cap SB\).

Suy ra \(\left\{ \begin{array}{l}K \in ME \subset \left( {MNP} \right)\\K \in SB \subset \left( {SBC} \right)\end{array} \right. \Rightarrow K \in \left( {MNP} \right) \cap \left( {SBC} \right)\).

Hơn nữa, ta có \(\left\{ \begin{array}{l}N \in \left( {MNP} \right)\\N \in BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow N \in \left( {MNP} \right) \cap \left( {SBC} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SBC} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(NK\).

Giao tuyến của \(\left( {MNP} \right)\)\(\left( {SCD} \right)\):

Ta có \(MF\) là giao tuyến của hai mặt phẳng \(\left( {SAD} \right)\) và \(\left( {MNP} \right)\)\( \Rightarrow MF \subset \left( {SAD} \right)\).

Trên mặt phẳng \(\left( {SAD} \right)\), gọi \(\left\{ L \right\} = MF \cap SD\).

Suy ra \(\left\{ \begin{array}{l}L \in MF \subset \left( {MNP} \right)\\L \in SD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow L \in \left( {MNP} \right) \cap \left( {SCD} \right)\).

Hơn nữa, ta có \(\left\{ \begin{array}{l}P \in \left( {MNP} \right)\\P \in CD \subset \left( {SCD} \right)\end{array} \right. \Rightarrow P \in \left( {MNP} \right) \cap \left( {SCD} \right)\).

Vậy giao tuyến của hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {MNP} \right)\) là đường thẳng \(LP\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK