Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương IV. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song Bài 35 trang 109 SBT Toán 11 - Cánh diều: Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên các đường chéo \(AC\)...

Bài 35 trang 109 SBT Toán 11 - Cánh diều: Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên các đường chéo \(AC\)...

Chỉ ra rằng \(MM’\parallel NN’\), từ đó suy ra 4 điểm \(M\), \(M’\), \(N\), \(N’\) đồng phẳng. Tương tự 4 điểm \(C\), \(D\), \(E\), \(F\) cũng đồng phẳng. Giải chi tiết - Bài 35 trang 109 sách bài tập toán 11 - Cánh diều - Bài 4. Hai mặt phẳng song song. Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng...

Đề bài :

Cho hai hình bình hành \(ABCD\) và \(ABEF\) không cùng nằm trong một mặt phẳng. Trên các đường chéo \(AC\), \(BF\) lần lượt lấy các điểm \(M\), \(N\) sao cho \(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}}\). Qua \(M\) vẽ đường thẳng song song với \(AB\) cắt \(AD\) tại \(M’\), qua \(N\) vẽ đường thẳng song song với \(AB\) cắt \(AF\) tại \(N’\).

a) Chứng minh rằng \(\left( {MNN’} \right)\parallel \left( {CDE} \right)\).

b) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và song song với mặt phẳng \(\left( {AFD} \right)\). Mặt phẳng \(\left( P \right)\) cắt đường thẳng \(EF\) tại \(I\). Tính \(\frac{{FI}}{{FE}}\), biết \(\frac{{AM}}{{AC}} = \frac{1}{3}\).

Hướng dẫn giải :

a) Chỉ ra rằng \(MM’\parallel NN’\), từ đó suy ra 4 điểm \(M\), \(M’\), \(N\), \(N’\) đồng phẳng. Tương tự 4 điểm \(C\), \(D\), \(E\), \(F\) cũng đồng phẳng.

Chứng minh rằng \(NN’\parallel CD\) (do cùng song song với \(AB\)) để suy ra \(NN’\parallel \left( {CDE} \right)\). Tiếp theo, chỉ ra rằng \(M’N’\parallel FD\) để suy ra \(M’N’\parallel \left( {CDE} \right)\), rồi suy ra điều phải chứng minh.

b) Sử dụng định lý Thales: Đường thẳng \(AC\) cắt ba mặt phẳng \(\left( {ADF} \right)\), \(\left( P \right)\), \(\left( {BCE} \right)\) lần lượt tại \(A\), \(M\), \(C\). Đường thẳng \(FE\) cắt ba mặt phẳng \(\left( {ADF} \right)\), \(\left( P \right)\), \(\left( {BCE} \right)\) lần lượt tại \(F\), \(I\), \(E\). Suy ra \(\frac{{AM}}{{FI}} = \frac{{MC}}{{IE}} = \frac{{CA}}{{EF}}\), từ đó tính được tỉ số \(\frac{{FI}}{{FE}}\).

Lời giải chi tiết :

image

a) Ta có \(MM’\parallel AB\), \(NN’\parallel AB \Rightarrow MM’\parallel NN’\). Suy ra 4 điểm \(M\), \(M’\), \(N\), \(N’\) đồng phẳng. Chứng minh tương tự ta cũng có 4 điểm \(C\), \(D\), \(E\), \(F\) đồng phẳng.

Mặt khác, ta có \(MM’\parallel AB\), \(AB\parallel CD\) nên \(MM’\parallel CD\).

Do \(CD \subset \left( {CDFE} \right)\) nên ta kết luận rằng \(MM’\parallel \left( {CDFE} \right)\).

Hơn nữa, do \(MM’\parallel AB\), nên theo định lý Thales ta có \(\frac{{AM}}{{AC}} = \frac{{AM’}}{{AD}}\).

Chứng minh tương tự ta cũng có \(\frac{{BN}}{{BF}} = \frac{{AN’}}{{AF}}\).

Theo đề bài, vì \(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}}\), ta suy ra \(\frac{{AM’}}{{AD}} = \frac{{AN’}}{{AF}}\), tức là \(M’N’\parallel FD\).

Do \(FD \subset \left( {CDFE} \right)\) nên ta kết luận rằng \(M’N’\parallel \left( {CDFE} \right)\).

Vì \(MM’\parallel \left( {CDFE} \right)\), \(M’N’\parallel \left( {CDFE} \right)\), \(MM’ \cap M’N’ = \left\{ {M’} \right\}\), nên ta có \(\left( {MNN’M’} \right)\parallel \left( {CDFE} \right)\), tức là \(\left( {MNN’} \right)\parallel \left( {CDE} \right)\). Bài toán được chứng minh.

b) Ta có \(AD\parallel BE\), \(BC \subset \left( {BCE} \right)\) nên \(AD\parallel \left( {BCE} \right)\). Tương tự ta cũng có \(DF\parallel \left( {BCE} \right)\). Vậy \(\left( {ADF} \right)\parallel \left( {BCE} \right)\)

Theo đề bài, vì \(\left( P \right)\parallel \left( {AFD} \right)\) và \(M \in \left( P \right)\), nên ba mặt phẳng \(\left( {ADF} \right)\), \(\left( P \right)\) và \(\left( {BCE} \right)\) đôi một phân biệt, và chúng cũng đôi một song song.

Đường thẳng \(AC\) cắt ba mặt phẳng \(\left( {ADF} \right)\), \(\left( P \right)\), \(\left( {BCE} \right)\) lần lượt tại \(A\), \(M\), \(C\). Đường thẳng \(FE\) cắt ba mặt phẳng \(\left( {ADF} \right)\), \(\left( P \right)\), \(\left( {BCE} \right)\) lần lượt tại \(F\), \(I\), \(E\). Áp dụng định lý Thales, ta suy ra \(\frac{{AM}}{{FI}} = \frac{{MC}}{{IE}} = \frac{{CA}}{{EF}} \Rightarrow \frac{{AM}}{{FI}} = \frac{{CA}}{{EF}} \Rightarrow \frac{{AM}}{{AC}} = \frac{{FI}}{{FE}}\).

Mà \(\frac{{AM}}{{AC}} = \frac{1}{3}\), ta kết luận \(\frac{{FI}}{{FE}} = \frac{1}{3}\).

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK