Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Chương II. Dãy số. Cấp số cộng và cấp số nhân Bài 25 trang 50 SBT Toán 11 - Cánh diều: Tìm năm số hạng liên tiếp của một cấp số cộng...

Bài 25 trang 50 SBT Toán 11 - Cánh diều: Tìm năm số hạng liên tiếp của một cấp số cộng...

Gọi năm số hạng liên tiếp của cấp số cộng cần tìm là \({u_1}, {u_2}, {u_3}, {u_4}, {u_5}\). Theo đề bài ta có hệ phương trình. Lời giải bài tập, câu hỏi - Bài 25 trang 50 sách bài tập toán 11 - Cánh diều - Bài 2. Cấp số cộng. Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng là 480...

Đề bài :

Tìm năm số hạng liên tiếp của một cấp số cộng, biết tổng của chúng bằng 40 và tổng bình phương của chúng là 480.

Hướng dẫn giải :

Gọi năm số hạng liên tiếp của cấp số cộng cần tìm là \({u_1},{u_2},{u_3},{u_4},{u_5}\).

Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 40\\u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = 480\end{array} \right.\)

Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) để đưa về hệ phương trình ẩn \({u_1}\) và \(d\).

Lời giải chi tiết :

Gọi năm số hạng liên tiếp của cấp số cộng cần tìm là \({u_1},{u_2},{u_3},{u_4},{u_5}\).

Theo đề bài ta có hệ phương trình: \(\left\{ \begin{array}{l}{u_1} + {u_2} + {u_3} + {u_4} + {u_5} = 40\\u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = 480\end{array} \right.\)

Do \({u_n} = {u_1} + \left( {n - 1} \right)d\), nên ta có:

\({u_1} + {u_2} + {u_3} + {u_4} + {u_5} = {u_1} + {u_1} + d + {u_1} + 2d + {u_1} + 3d + {u_1} + 4d = 5{u_1} + 10d\)

Ta suy ra \(5{u_1} + 10d = 40 \Leftrightarrow {u_1} + 2d = 8 \Leftrightarrow {u_1} = 8 - 2d\) (1)

Mặt khác, ta lại có:

\(u_1^2 + u_2^2 + u_3^2 + u_4^2 + u_5^2 = u_1^2 + {\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 2d} \right)^2} + {\left( {{u_1} + 3d} \right)^2} + {\left( {{u_1} + 4d} \right)^2}\)

\( = 5u_1^2 + 20{u_1}d + 30{d^2}\)

Ta suy ra \(5u_1^2 + 20{u_1}d + 30{d^2} = 480 \Leftrightarrow u_1^2 + 4{u_1}d + 6{d^2} = 96\) (2)

Từ (1) và (2) ta suy ra

\({\left( {8 - 2d} \right)^2} + 4d\left( {8 - 2d} \right) + 6{d^2} = 96 \Leftrightarrow 4{d^2} - 32d + 64 + 32d - 8{d^2} + 6{d^2} = 96\)

\( \Leftrightarrow 2{d^2} = 32 \Leftrightarrow d = \pm 4\).

Với \(d = - 4\), ta suy ra \({u_1} = 16\). Từ đó năm số hạng liên tiếp cần tìm là 16, 12, 8, 4, 0.

Với \(d = 4\), ta suy ra \({u_1} = 0\). Từ đó năm số hạng liên tiếp cần tìm là 0, 4, 8, 12, 16.

Vậy năm số hạng liên tiếp của cấp số cộng cần tìm là 0, 4, 8, 12, 16.

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK