Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Chương V. Một số yếu tố thống kê và xác suất Giải mục 4 trang 10 Toán 11 tập 2 - Cánh Diều: Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{n}{4}...

Giải mục 4 trang 10 Toán 11 tập 2 - Cánh Diều: Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{n}{4}...

. Hướng dẫn cách giải/trả lời HĐ 6, LT 6 mục 4 trang 10 SGK Toán 11 tập 2 - Cánh Diều Bài 1. Các số đặc trưng xu thế trung tâm cho mẫu số liệu ghép nhóm. Giáo viên chủ nhiệm chia thời gian sử dụng Internet trong một ngày của 40 học sinh thành năm nhóm... Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{n}{4}

Câu hỏi:

Hoạt động 6

Giáo viên chủ nhiệm chia thời gian sử dụng Internet trong một ngày của 40 học sinh thành năm nhóm (đơn vị: phút) và lập bảng số ghép nhóm bao gồm cả tần số tích lũy như Bảng 12

image

a) Tìm trung vị \({M_e}\) của mẫu số liệu ghép nhóm đó. Trung vị \({M_e}\) còn gọi là tứ phân vị thứ 2 \({Q_2}\) của mẫu số liệu trên.

b) Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{40}}{4} = 10\) có đúng không?

Tìm đầu mút trái \(s\), độ dài \(h\), tần số \({n_2}\) của nhóm 2; tần số tích lũy \(c{f_1}\) của nhóm 1

Sau đó, hãy tính giá trị \({Q_1}\) theo công thức sau: \({Q_1} = s + \left( {\frac{{10 - c{f_1}}}{{{n_2}}}} \right).h\)

Giá trị nói trên được gọi là tứ phân vị thứ nhất \({Q_1}\) của mẫu số liệu đã cho

c) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.40}}{4} = 30\) có đúng không?

  • Tìm đầu mút trái \(t\), độ dài \(l\), tần số \({n_3}\) của nhóm 3; tần số tích lũy \(c{f_2}\) của nhóm 2.

Sau đó, hãy tính giá trị \({Q_3}\) theo công thức sau: \({Q_3} = t + \left( {\frac{{30 - c{f_2}}}{{{n_3}}}} \right).l\)

Giá trị nói trên được gọi là tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu đã cho

Hướng dẫn giải :

Áp dụng các công thức đã được học và công thức được cho để thực hiện bài toán.

Lời giải chi tiết :

a) \({M_e} = 120 + \left( {\frac{{20 - 19}}{{13}}} \right).60 = \frac{{1620}}{{13}}\)

b) Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10

- Đầu mút trái của nhóm 2: 60

- Độ dài của nhóm 2: 60

- Tần số của nhóm 2: 13

- Tần số tích lũy của nhóm 1: 6

\({Q_1} = 60 + \left( {\frac{{10 - 6}}{{13}}} \right).60 = \frac{{1020}}{{13}}\)

c) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30

- Đầu mút trái của nhóm 3: 120

- Độ dài của nhóm 3: 60

- Tần số của nhóm 3: 13

- Tần số tích lũy của nhóm 2: 19

\({Q_3} = 120 + \left( {\frac{{20 - 19}}{{13}}} \right).60 = \frac{{1620}}{{13}}\)


Câu hỏi:

Luyện tập 6

Tìm tứ phân vị của mẫu số liệu trong bảng 1

Hướng dẫn giải :

Dựa vào kiến thức tứ phân vị vừa làm để xác định

Lời giải chi tiết :

image

Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 60

+ Đầu mút trái của nhóm 3: 8

+ Độ dài của nhóm 3: 4

+ Tần số của nhóm 3: 48

+ Tần số tích lũy \(c{f_2}\) của nhóm 2: 42

\({M_e} = 8 + \left( {\frac{{60 - 42}}{{48}}} \right).4 = 9,5\)

Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30

+ Đầu mút trái của nhóm 2: 4

+ Độ dài của nhóm 2: 4

+ Tần số của nhóm 2: 29

+ Tần số tích lũy \(c{f_1}\) của nhóm 1 là: 13

\({Q_1} = 4 + \left( {\frac{{30 - 13}}{{29}}} \right).4 \approx 6,34\)

Nhóm 3 là nhóm đầu tiên có tần số lớn hơn hoặc bằng 90

+ Đầu mút trái của nhóm 3: 8

+ Độ dài của nhóm 3: 4

+ Tần số của nhóm 3: 48

+ Tần số tích lũy \(c{f_2}\) của nhóm 2: 42

\({M_e} = 8 + \left( {\frac{{90 - 42}}{{48}}} \right).4 = 12\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK