Quan sát dãy số \((u_n)\) với \(u_n = n^2\) và cho biết giá trị của n có thể lớn hơn một số dương bất kì được hay không kể từ một số hạng nào đó trở đi.
Xác định các giá trị của dãy số dựa vào công thức tính số hạng tổng quát.
Ta có bảng giá trị sau:
n |
1 |
2 |
3 |
... |
100 |
... |
1001 |
\(u_n\) |
1 |
4 |
9 |
... |
10 000 |
... |
1 002 001 |
Từ đó ta có các nhận xét sau:
+) Kể từ số hạng thứ 2 trở đi thì \(u_n > 1\) .
+) Kể từ số hạng thứ 101 trở đi thì \(u_n > 10 000\).
...
Vậy ta thấy \(u_n\) có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.
Tính \(\lim \left( { - {n^3}} \right).\)
Sử dụng định nghĩa về dãy số có giới hạn vô cực.
- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( + \infty \) khi \(n \to + \infty \) nếu \({u_n}\) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = + \infty \) hay \({u_n} \to + \infty \) khi \(n \to + \infty \).
- Dãy số \(\left( {{u_n}} \right)\) được gọi là có giới hạn \( - \infty \) khi \(n \to + \infty \) nếu \(\mathop {\lim }\limits_{x \to + \infty } \left( { - {u_n}} \right) = + \infty \), kí hiệu \(\mathop {\lim }\limits_{x \to + \infty } {u_n} = - \infty \) hay \({u_n} \to - \infty \) khi \(n \to + \infty \).
Xét dãy \(\left( {{u_n}} \right) = {n^3}\)
Với M là số dương bất kì, ta thấy \({u_n} > M \Leftrightarrow {n^3} > M \Leftrightarrow n > \sqrt[3]{M}.\)
Vậy với các số tự nhiên \(n > \sqrt[3]{M}\) thì \({u_n} > M.\) Do đó, \(\lim {n^3} = + \infty \Rightarrow \lim \left( { - {n^3}} \right) = - \infty \)
Chứng tỏ rằng \(\lim \frac{{n - 1}}{{{n^2}}} = 0.\)
Sử dụng lý thuyết một số giới hạn cơ bản: \(\lim \frac{1}{n} = 0;\lim \frac{1}{{{n^k}}} = 0\) với k là số nguyên dương cho trước.
\(\lim \frac{{n - 1}}{{{n^2}}} = \lim \left( {\frac{1}{n} - \frac{1}{{{n^2}}}} \right) = \lim \frac{1}{n} - \lim \frac{1}{{{n^2}}} = 0\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK