Trang chủ Lớp 11 SGK Toán 11 - Cánh diều Chương 1 Hàm số lượng giác và phương trình lượng giác Giải mục 1 trang 16, 17 Toán 11 tập 1 - Cánh Diều: Cho \(a = \frac{\pi}{6}, b = \frac{\pi}{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b)...

Giải mục 1 trang 16, 17 Toán 11 tập 1 - Cánh Diều: Cho \(a = \frac{\pi}{6}, b = \frac{\pi}{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b)...

. Hướng dẫn giải HĐ 1, LT, VD 1, HĐ 2, LT, VD 2, HĐ 3, LT, VD 3 mục 1 trang 16, 17 SGK Toán 11 tập 1 - Cánh Diều Bài 2. Các phép biến đổi lượng giác. Cho tam giác MNP có đường cao PQ (Hình 17)...

Câu hỏi:

Hoạt động 1

a) Cho \(a = \frac{\pi}{6}, b = \frac{\pi}{3}\). Hãy tính sina, cosa, sinb, cosb và sin(a + b). Từ đó rút ra đẳng thức sin(a + b) = sina cosb + cosa sinb (*).

b) Tính sin(a – b) bằng cách biến đổi sin(a – b) = sin[a + (‒b)] và sử dụng công thức (*).

Hướng dẫn giải :

Dựa vào công thức sin, cos đã học để xác định

Lời giải chi tiết :

a) Với \(a = \frac{\pi}{6}\) ta có \(sin a = sin\frac{\pi}{6} =\frac{1}{2}\); \(cos a = cos\frac{\pi}{6} =\frac{\sqrt 3}{2}\)

Với \( b = \frac{\pi}{3}\) ta có \(sin b = sin\frac{\pi}{3} = \frac{\sqrt 3}{2}\); \(cosb = cos\frac{\pi}{3} = \frac{1}{2}\)

Ta có \(sin(a+b) = sin(\frac{\pi}{6}+\frac{\pi}{3})=sin \frac{\pi}{2}=1\)

\( sinacosb + cosasinb = \frac{1}{2}.\frac{1}{2}+\frac{\sqrt 3}{2}.\frac{\sqrt 3}{2}=\frac{1}{4}+\frac{3}{4}=1\)

Do đó sin(a+b) = sina.cosb +cosa.sinb (vì cùng bằng 1)

b) Ta có sin(a – b) = sin[a + (‒b)]

= sina cos(‒b) + cosa sin(‒b)

= sina cosb + cosa (‒sinb)

= sina cosb ‒ cosa sinb


Câu hỏi:

Luyện tập - VD 1

Tính \(\sin \frac{\pi }{{12}}\)

Hướng dẫn giải :

Sử dụng công thức cộng đối với sin

Lời giải chi tiết :

Áp dụng công thức cộng, ta có:

\(\begin{array}{l}\sin \frac{\pi }{{12}} = \sin \left( {\frac{\pi }{4} - \frac{\pi }{6}} \right) = \sin \frac{\pi }{4}.\cos \frac{\pi }{6} - \cos \frac{\pi }{4}.\sin \frac{\pi }{6}\\ = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 2 }}{2}.\frac{1}{2} = \frac{{\sqrt 6 - \sqrt 2 }}{4}\end{array}\)


Câu hỏi:

Hoạt động 2

a) Tính \(\cos \left( {a + b} \right)\) bằng cách biến đổi \(\cos \left( {a + b} \right) = \sin \left[ {\frac{\pi }{2} - \left( {a + b} \right)} \right] = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right]\) và sử dụng công thức cộng đối với sin

b) Tính \(\cos \left( {a - b} \right)\) bằng cách biến đổi \(\cos \left( {a - b} \right) = \cos \left[ {a + \left( { - b} \right)} \right]\) và sử dụng công thức \(\cos \left( {a + b} \right)\) có được ở câu a

Hướng dẫn giải :

Dựa vào công thức cộng sin đã chứng minh ở bên trên để tính

Lời giải chi tiết :

a) \(\cos \left( {a + b} \right) = \sin \left[ {\left( {\frac{\pi }{2} - a} \right) - b} \right] = \sin \left( {\frac{\pi }{2} - a} \right).\cos b - \cos \left( {\frac{\pi }{2} - a} \right).\sin b = \cos a.\cos b - \sin a.\sin b\)

b) \(\cos \left( {a - b} \right) = \cos \left[ {a + \left( { - b} \right)} \right] = \cos a.\cos \left( { - b} \right) - \sin a.\sin \left( { - b} \right) = \sin a.\sin b + \cos a.\cos b\)


Câu hỏi:

Luyện tập - VD 2

Tính \(\cos {15^ \circ }\)

Hướng dẫn giải :

Sử dụng công thức cộng dối với cosin

Lời giải chi tiết :

Áp dụng công thức cộng, ta có:

\(\begin{array}{l}\cos {15^ \circ } = \cos ({45^ \circ } - {30^ \circ }) = \cos {45^ \circ }\cos {30^ \circ } + \sin {45^ \circ }\sin {30^ \circ }\\ = \frac{{\sqrt 2 }}{2}.\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 2 }}{2}.\frac{1}{2} = \frac{{\sqrt 6 + \sqrt 2 }}{4}\end{array}\)


Câu hỏi:

Hoạt động 3

a) Sử dụng công thức cộng đối với sin và côsin, hãy tính \(\tan \left( {a + b} \right)\) theo tan a và tan b khi các biểu thức đều có nghĩa

b) Khi các biểu thức đều có nghĩa, hãy tính \(\tan \left( {a - b} \right)\) bằng cách biến đổi \(\tan \left( {a - b} \right) = \tan \left[ {a + \left( { - b} \right)} \right]\) và sử dụng công thức \(\tan \left( {a + b} \right)\) có được ở câu a.

Hướng dẫn giải :

Dựa vào công thức cộng sin, cos đã chứng minh ở bên trên để tính

Lời giải chi tiết :

a) \(\tan \left( {a + b} \right) = \frac{{\sin \left( {a + b} \right)}}{{\cos \left( {a + b} \right)}} = \frac{{\sin a.\cos b + \cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\)

\(\begin{array}{l} = \frac{{\sin a.\cos b + \cos a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} = \frac{{\sin a.\cos b}}{{\cos a.\cos b - \sin a.\sin b}} + \frac{{\cos a.\sin b}}{{\cos a.\cos b - \sin a.\sin b}}\\ = \frac{{\frac{{\sin a.\cos b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} + \frac{{\frac{{\cos a.\sin b}}{{\cos a.\cos b}}}}{{\frac{{\cos a.\cos b - \sin a.\sin b}}{{\cos a.\cos b}}}} = \frac{{\tan a}}{{1 - \tan a.\tan b}} + \frac{{\tan b}}{{1 - \tan a.\tan b}}\\ = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\end{array}\)

\( \Rightarrow \tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a.\tan b}}\)

b)

\(\tan \left( {a - b} \right) = \tan \left( {a + \left( { - b} \right)} \right) = \frac{{\tan a + \tan \left( { - b} \right)}}{{1 - \tan a.\tan \left( { - b} \right)}} = \frac{{\tan a - \tan b}}{{1 + \tan a.\tan b}}\)


Câu hỏi:

Luyện tập - VD 3

Tính \(\tan {165^ \circ }\)

Hướng dẫn giải :

Sử dụng công thức cộng đối với tang

Lời giải chi tiết :

\(\begin{array}{l}\tan {165^ \circ } = \tan ({105^ \circ } + {60^ \circ }) = \frac{{\tan {{105}^ \circ } + \tan {{60}^ \circ }}}{{1 - \tan {{105}^ \circ }.\tan {{60}^ \circ }}}\\ = \frac{{ - 2 - \sqrt 3 + \sqrt 3 }}{{1 - ( - 2 - \sqrt 3 ).\sqrt 3 }} = - 2 + \sqrt 3 \end{array}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 11

Lớp 11 - Năm học quan trọng, bắt đầu hướng đến những mục tiêu sau này. Hãy học tập chăm chỉ và tìm ra đam mê của mình để có những lựa chọn đúng đắn cho tương lai!'

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK