Biểu diễn miền nghiệm của các hệ bất phương trình sau:
a) \(\left\{ {\begin{array}{*{20}{c}}{x - 3y < 0}\\{x + 2y > - 3}\\{x + y < 2}\end{array}} \right.\) b) \(\left\{ {\begin{array}{*{20}{c}}{x - 2y \le 3}\\{3x + 2y \ge 9}\\{x + y \le 6}\\{x \ge 1}\end{array}} \right.\) c) \(\left\{ {\begin{array}{*{20}{c}}{x + 2y \le 2}\\{x + 2y \ge - 2}\\{x - 2y \le 2}\\{x - 2y \ge - 2}\end{array}} \right.\)
Xác định miền nghiệm của từng bpt. Miền nghiệm của hệ bpt là miền giao của các miền nghiệm ấy.
Biểu diễn miền nghiệm của bpt \(ax + by < c\)
Bước 1: Vẽ đường thẳng \(d:ax + by = c\)
Bước 2: Lấy một điểm \(M\left( {{x_o};{y_o}} \right)\) không thuộc d (ta thường lấy gốc tọa độ O nếu \(c \ne 0\)). Tính \(a{x_o} + b{y_o}\) và so sánh với c
Bước 3: Kết luận
Nếu \(a{x_o} + b{y_o} < c\)thì nửa mặt phẳng (không kể đường thẳng d) chứa điểm M là miền nghiệm của bất phương trình \(ax + by < c\)
Nếu \(a{x_o} + b{y_o} > c\) thì nửa mặt phẳng (không kể d) không chứa điểm M là miền nghiệm của bất phương trình \(ax + by > c\)
a) Vẽ các đường thẳng:
\({d_1}{\rm{:}}\;x-3y = 0\) đi qua hai điểm có tọa độ (0; 0) và (3; 1).
\({d_2}{\rm{:}}\;x + 2y = - 3\) đi qua hai điểm có tọa độ (– 3; 0) và (1; – 2).
\({d_3}{\rm{:}}\;x + y = 2\) đi qua hai điểm có tọa độ (2; 0) và (0; 2).
Xét điểm A(1;0), không thuộc \({d_1},{d_2},{d_3}.\)
\(1 - 3.0 = 1 > 0 \Rightarrow A(1;0)\) không thuộc miền nghiệm của BPT \(x - 3y < 0\)
\(1 + 2.0 = 1 > - 3 \Rightarrow A(1;0)\) thuộc miền nghiệm của BPT \(x + 2y > - 3\)
\(1 + 0 = 1 < 2 \Rightarrow A(1;0)\) thuộc miền nghiệm của BPT \(x + y < 2\)
Biểu diễn miền nghiệm của từng bpt và gạch bỏ các miền không là nghiệm, ta được:
Miền nghiệm của hệ bpt là miền không gạch (không kể các bờ) trong hình trên.
b) Vẽ các đường thẳng:
d1: x – 2y = 3 đi qua hai điểm có tọa độ là (3; 0) và (1; – 1).
d2: 3x + 2y = 9 đi qua hai điểm (3; 0) và (1; 3).
d3: x + y = 6 đi qua hai điểm (6; 0) và (0; 6).
d4: x = 1 song song với trục tung và đi qua điểm (1; 0).
Xét điểm O(0;0), không thuộc \({d_1},{d_2},{d_3},{d_4}.\)
\(0 - 2.0 = 0 \le 3 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x - 2y \le 3\)
\(3.0 + 2.0 < 9 \Rightarrow O(0;0)\) không thuộc miền nghiệm của BPT \(3x + 2y \ge 9\)
\(0 + 0 = 0 \le 6 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x + y \le 6\)
\(0 < 1 \Rightarrow O(0;0)\) không thuộc miền nghiệm của BPT \(x \ge 1\)
Biểu diễn miền nghiệm của từng bpt và gạch bỏ các miền không là nghiệm, ta được:
Miền nghiệm của hệ BPT là miền tứ giác ABCD (kể cả các cạnh) với A(1;3), B(1;5), C(5;1), D(3;0).
c) Vẽ các đường thẳng:
d1: x + 2y = 2 đi qua hai điểm có tọa độ là (2; 0) và (0; 1).
d2: x + 2y = – 2 đi qua hai điểm có tọa độ là (– 2; 0) và (0; – 1).
d3: x – 2y = 2 đi qua hai điểm có tọa độ là (2; 0) và (0; – 1).
d4: x – 2y = – 2 đi qua hai điểm có tọa độ là (–2; 0) và (0; 1).
Xét điểm O(0;0), không thuộc \({d_1},{d_2},{d_3},{d_4}.\)
\(0 + 2.0 = 0 \le 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x + 2y \le 2\)
\(0 + 2.0 = 0 \ge - 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x + 2y \ge - 2\)
\(0 - 2.0 = 0 \le 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x - 2y \le 2\)
\(0 - 2.0 = 0 \ge - 2 \Rightarrow O(0;0)\) thuộc miền nghiệm của BPT \(x - 2y \ge - 2\)
Như vậy O(0;0) thuộc miền nghiệm của hệ bpt.
Biểu diễn miền nghiệm của từng bpt và gạch bỏ các miền không là nghiệm, ta được:
Miền nghiệm của hệ BPT là miền tứ giác ABCD (kể cả các cạnh) với A(-2;0), B(0;1), C(2;0), D(0;-1).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK