Cho mẫu số liệu: 1 11 13 15 17 21
a) Tìm khoảng biến thiên của mẫu số liệu trên
b) Tìm khoảng tứ phân vị của mẫu số liệu trên
c) Tìm phương sai và độ lệch chuẩn của mẫu số liệu trên
d) Tìm giá trị bất thường của mẫu số liệu trên.
+ Sắp xếp số liệu theo thứ tự không giảm và tìm khoảng biến thiên theo công thức\(R = {x_n} - {x_1}\) với số cao nhất và thấp nhất lần lượt \({x_n},{x_1}\)
+ Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1}\)
Bước 1: Sắp xếp các số liệu theo thứ tự không giảm.
Bước 2: Tính cỡ mẫu \(n\), tìm tứ phân vị thứ hai \({Q_2}\)(chính là trung vị của mẫu).
Bước 3: Tìm tứ phân vị thứ nhất: là trung vị của nửa số liệu đã sắp xếp bên trái \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
Bước 4: Tìm tứ phân vị thứ ba: là trung vị của nửa số liệu đã sắp xếp bên phải \({Q_2}\) (không bao gồm \({Q_2}\) nếu n lẻ)
+ Tìm phương sai theo công thức \({S^2} = \frac{1}{n}\left( {{n_1}{x_1}^2 + {n_2}{x_2}^2 + ... + {n_k}{x_k}^2} \right) - {\overline x ^2}\) và độ lệch chuẩn \(S = \sqrt {{S^2}} \)
+ Giá trị ngoại lệ là giá trị trong mẫu thỏa mãn \(a < {Q_1} - 1,5.{\Delta _Q}\) và \(a > {Q_3} + 1,5.{\Delta _Q}\)
Cho mẫu số liệu: 1 11 13 15 17 21
a) Số cao nhất và thấp nhất lần lượt là 21 và 1 do đó khoảng biến thiên của dãy số liệu trên là: \(R = 21 - 1 = 20\)
b)
+ Vì \(n = 6\) là số chẵn nên tứ phân vị thứ hai là: \({Q_2} = \left( {13 + 15} \right):2 = 14\) là tứ phân vị
+ Tứ phân vị thứ nhất là trung vị của 3 số đầu tiên của mẫu số liệu: \({Q_1} = 11\)
+ Tứ phân vị thứ ba là trung vị của 3 số cuối của mẫu số liệu: \({Q_3} = 17\)
+ Khoảng tứ phân vị: \(\Delta Q = {Q_3} - {Q_1} = 17 - 11 = 6\)
c)
+ Số trun bình cộng: \(\overline x = \frac{{1 + 11 + 13 + 15 + 17 + 21}}{6} = 13\)
+ Phương sai: \({S^2} = \frac{1}{6}\left( {{1^2} + {{11}^2} + ... + {{21}^2}} \right) - {13^2} = \frac{{116}}{3}\)
+ Độ lệch chuẩn: \(S = \sqrt {{S^2}} = \sqrt {\frac{{116}}{3}} = \frac{{2\sqrt {87} }}{3}\)
d) Ta có \({Q_1} - 1,5.{\Delta _Q} = 11 - 1,5.6 = 2\) và \({Q_3} + 1,5.{\Delta _Q} = 17 + 1,5.6 = 26\) nên mẫu có một giá trị ngoại lệ là 1.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK