Một hội thảo quốc tế gồm 12 học sinh đến từ các nước: VN, Nhật Bản, Singapore, Ấn Độ, Hàn Quốc, Brasil, Canada, Tây Ban Nha, Đức, Pháp, Nam Phi, Cameroon, mỗi nước chỉ có đúng 1 học sinh. Chọn ra ngẫu nhiên 2 học sinh trong nhóm học sinh quốc tế để tham gia BTC:
Tính xác suất của mỗi biến cố sau:
a) A: “Hai học sinh được chọn ra đến từ châu Á”
b) B: “Hai học sinh được chọn ra đến từ châu Âu”
c) C: “Hai học sinh được chọn ra đến từ châu Mĩ”
d) D: “Hai học sinh được chọn ra đến từ châu Phi”
Xác suất của biến cố A là một số, kí hiệu \(P\left( A \right)\) được xác định bởi công thức: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\), trong đó \(n\left( A \right)\) và \(n\left( \Omega \right)\) lần lượt là kí hiệu số phần tử của tập A và \(\Omega \)
Chọn 2 học sinh từ 12 học sinh \( \Rightarrow \) tổ hợp chập 2 của 12 \( \Rightarrow n\left( \Omega \right) = C_{12}^2 = 66\)
a) A: “Hai học sinh được chọn ra đến từ châu Á”:
Có 5 nước châu Á: Việt Nam, Nhật Bản, Singapore, Ấn Độ, HQ
\( \Rightarrow n\left( A \right) = C_5^2 = 10\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{10}}{{66}} = \frac{5}{{33}}\)
b) B: “Hai học sinh được chọn ra đến từ châu Âu”: Có 3 nước châu Âu: TBN, Đức, Pháp \( \Rightarrow n\left( B \right) = C_3^2 = 3\)
\( \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{3}{{66}} = \frac{1}{{22}}\)
c) C: “Hai học sinh được chọn ra đến từ châu Mĩ”: Có 2 nước châu Mĩ: Brasil, Canada \( \Rightarrow n\left( C \right) = C_2^2 = 1\)
\( \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{1}{{66}}\)
d) D: “Hai học sinh được chọn ra đến từ châu Phi”: Có 2 nước châu Phi: Nam Phi, Cameroon \( \Rightarrow n\left( D \right) = C_2^2 = 1\)
\( \Rightarrow P\left( D \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{1}{{66}}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK