Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 1. Giá trị lượng giác của một góc từ 0 đến 180. Định lí cosin và định lí sin trong tam giác Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180. Định lí cosin và định lí sin trong tam giác Toán 10 Cánh diều: I. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0 ĐẾN...

Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180. Định lí cosin và định lí sin trong tam giác Toán 10 Cánh diều: I. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0 ĐẾN...

Lý thuyết Giá trị lượng giác của một góc từ 0 đến 180. Định lí cosin và định lí sin trong tam giác - SGK Toán 10 Cánh diều - Bài 1. Giá trị lượng giác của một góc từ 0 đến 180. Định lí cosin và định lí sin trong tam giác

I. GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0 ĐẾN 180

1. Giá trị lượng giác của một góc từ 0 đến 180

+) Với mỗi góc \(\alpha ({0^o} \le \alpha {\rm{\;}} \le {180^o})\) có duy nhất điểm \(M({x_0};{y_0})\) trên nửa đường tròn đơn vị để \(\widehat {xOM} = \alpha .\)Khi đó:

\(\sin \alpha {\rm{\;}} = {y_0}\) là tung độ của M

\(\cos \alpha {\rm{\;}} = {x_0}\) là hoành độ của M

\(\tan \alpha {\rm{\;}} = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{{y_0}}}{{{x_0}}}(\alpha {\rm{\;}} \ne {90^o})\)

\(\cot \alpha {\rm{\;}} = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{{x_0}}}{{{y_0}}}(\alpha {\rm{\;}} \ne {0^o},\alpha {\rm{\;}} \ne {180^o})\)

 2. Quan hệ giữa các giá trị lượng giác của hai góc bù nhau

Hai góc bù nhau, \(\alpha \) và \({180^o} - \alpha \):

\(\begin{array}{*{20}{l}}{\sin \left( {{{180}^o} - \alpha } \right) = \sin \alpha }\\{\cos \left( {{{180}^o} - \alpha } \right) = {\rm{\;}} - \cos \alpha }\\{\tan \left( {{{180}^o} - \alpha } \right) = {\rm{\;}} - \tan \alpha (\alpha {\rm{\;}} \ne {{90}^o})}\\{\cot \left( {{{180}^o} - \alpha } \right) = {\rm{\;}} - \cot \alpha ({0^o} < \alpha {\rm{\;}} < {{180}^o})}\end{array}\)

Hai góc phụ nhau, \(\alpha \) và \({90^o} - \alpha \):

\(\begin{array}{*{20}{l}}{\sin \left( {{{90}^o} - \alpha } \right) = \cos \alpha }\\{\cos \left( {{{90}^o} - \alpha } \right) = \sin \alpha }\\{\tan \left( {{{90}^o} - \alpha } \right) = \cot \alpha (\alpha {\rm{\;}} \ne {{90}^o},{0^o} < \alpha {\rm{\;}} < {{180}^o})}\\{\cot \left( {{{90}^o} - \alpha } \right) = \tan \alpha (\alpha {\rm{\;}} \ne {{90}^o},{0^o} < \alpha {\rm{\;}} < {{180}^o})}\end{array}\)

 3. Các giá trị lượng giác của một số góc đặc biệt

 image

 

II. ĐỊNH LÍ COSIN

1.  Định lí cosin

Trong tam giác ABC:

\(\begin{array}{*{20}{l}}{{a^2} = {b^2} + {c^2} - 2bc\cos A}\\{{b^2} = {c^2} + {a^2} - 2ca\cos B}\\{{c^2} = {a^2} + {b^2} - 2ab\cos C}\end{array}\)          

2.  Hệ quả

\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\)

 

 III. ĐỊNH LÍ SIN

1.  Định lí sin

Trong tam giác ABC: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)

(R là bán kính đường tròn ngoại tiếp tam giác ABC)

2.  Hệ quả

Hệ quả

\(a = 2R.\sin A;\quad b = 2R\sin B;\quad c = 2R\sin C\)

\(\sin A = \frac{a}{{2R}};\quad \sin B = \frac{b}{{2R}};\quad \sin C = \frac{c}{{2R}}.\)

 

 

 

 

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK