Trang chủ Lớp 10 Toán lớp 10 - Cánh diều Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản Mục I trang 42, 43 Toán 10 tập 2 Cánh diều: Để tính xác suất của biến cố nói trên, ta sẽ lấy số phần tử của kết quả có lợi cho b...

Mục I trang 42, 43 Toán 10 tập 2 Cánh diều: Để tính xác suất của biến cố nói trên, ta sẽ lấy số phần tử của kết quả có lợi cho b...

Giải mục I trang 42, 43 SGK Toán 10 tập 2 - Cánh diều - Bài 4. Xác suất của biến cố trong một số trò chơi đơn giản

HĐ Khởi động

image

Lời giải chi tiết :

Để tính xác suất của biến cố nói trên, ta sẽ lấy số phần tử của kết quả có lợi cho biến cố chia cho số phần tử của không gian mẫu.

Cụ thể:

Không gian mẫu là tập hợp \(\Omega  = \{ SS;SN;NS;NN\} \). Do đó \(n(\Omega ) = 4\)

Các kết quả thuận lợi cho biến cố (A) đã cho là: SN; NS; NN, tức là \(n(A) = 3\)

Vậy xác suất của biến cố A là \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{3}{4}.\)

Hoạt động 1

Viết tập hợp \(\Omega \)  các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung

Lời giải chi tiết :

• Tập hợp 2 các kết quả có thể xảy ra đối với mặt xuất hiện của đồng xu sau hai lần tung là\(\Omega  = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\) , trong đó, chẳng hạn SN là kết quả “Lần thứ nhất đồng xu xuất hiện mặt sấp, lần thứ hai đồng xu xuất hiện mặt ngửa”.

• Tập hợp  \(\Omega \) gọi là không gian mẫu trong trò chơi tung một đồng xu hai lần liên tiếp.

Hoạt động 2

Xét sự kiện “Kết quả của hai lần tung đồng xu là giống nhau”. Sự kiện đã nêu bao gồm những kết quả nào trong tập hợp \(\Omega \) ? Viết tập hợp A các kết quả đó.

Lời giải chi tiết :

Tập hợp A các kết quả có thể xảy ra đối với sự kiện trên là: A = {SS; NN}

Hoạt động 3

Viết tỉ số giữa số phần tử của tập hợp A và số phần tử của tập hợp \(\Omega \).

Lời giải chi tiết :

Tỉ số giữa số phần tử của tập hợp A và số phần tử của tập hợp \(\Omega \) là \(\frac{2}{4} = \frac{1}{2}\)

Luyện tập – vận dụng 1

Tung một đồng xu hai lần liên tiếp. Xét biến cố “Có ít nhất một lần xuất hiện mặt sấp”. Tính xác suất của biến cố nói trên.

Lời giải chi tiết :

+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega  = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega  \right) = 4\)

+) Gọi A là biến cố “Có ít nhất một lần xuất hiện mặt sấp”

+) Các kết quả thuận lợi cho biến cố A là: \(SS;{\rm{ }}SN;{\rm{ }}NS\)tức là \(A = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS} \right\}\). Vậy \(n\left( A \right) = 3\).

+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{3}{4}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 10

Lớp 10 - Năm đầu tiên ở cấp trung học phổ thông, bước vào một môi trường mới với nhiều bạn bè từ khắp nơi. Hãy tận hưởng thời gian này và bắt đầu định hướng tương lai cho mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK