Trang chủ Lớp 9 SGK Toán 9 - Cánh diều Chương 5. Đường tròn Bài 5 trang 124 Toán 9 Cánh diều tập 1: Cho hai đường tròn \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tiếp xúc ngoài với nhau tại \(P\) với \(R...

Bài 5 trang 124 Toán 9 Cánh diều tập 1: Cho hai đường tròn \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tiếp xúc ngoài với nhau tại \(P\) với \(R...

Dựa vào kiến thức đã học để chứng minh.. Gợi ý giải bài tập 5 trang 124 SGK Toán 9 tập 1 - Cánh diều Bài tập cuối chương 5. Cho hai đường tròn \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tiếp xúc ngoài với nhau tại \(P\) với \(R \ne r\)...

Đề bài :

Cho hai đường tròn \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tiếp xúc ngoài với nhau tại \(P\) với \(R \ne r\), đường thẳng \(a\) lần lượt tiếp xúc với \(\left( {I;r} \right)\) và \(\left( {K;R} \right)\) tại \(A\) và \(B,a\) cắt \(KI\) tại \(O\). Đường thẳng qua \(P\) vuông góc với \(IK\) cắt đường thẳng \(a\) tại \(M\). Chứng minh:

a) \(\frac{{OI}}{{OK}} = \frac{r}{R}\);

b) \(AB = 2MP\);

c) \(\widehat {IMK} = 90^\circ \).

Hướng dẫn giải :

Dựa vào kiến thức đã học để chứng minh.

Lời giải chi tiết :

image

a) Do \(AI\) là tiếp tuyến của \(\left( I \right)\) nên \(AI \bot AB\)

Do \(BK\) là tiếp tuyến của \(\left( K \right)\) nên \(KB \bot AB\)

Từ đó suy ra \(AI//BK\)

Xét tam giác \(OBK\) có: \(AI//BK \Rightarrow \frac{{OI}}{{OK}} = \frac{{AI}}{{BK}} = \frac{r}{R}\) (định lí Thalet).

b) Xét \(\left( I \right)\) có \(MP,MA\) là hai tiếp tuyến cắt nhau

\( \Rightarrow MP = MA\)(1).

Xét \(\left( K \right)\) có \(MP,MB\) là hai tiếp tuyến cắt nhau

\( \Rightarrow MP = MB\)(2).

Từ (1) và (2) suy ra \(MP + MP = MA + MB \Rightarrow 2MP = AB\)

c) Do \(AI//BK \Rightarrow \widehat {OIA} = \widehat {IKB}\) (2 góc đồng vị).

Mà \(\widehat {AIK} + \widehat {OAI} = 180^\circ \) (2 góc kề bù) nên \(\widehat {AIK} + \widehat {IKB} = 180^\circ \) (3).

Do \(MP,MA\) là hai tiếp tuyến cắt nhau

\( \Rightarrow IM\) là phân giác \(\widehat {AIP} \Rightarrow \widehat {MIP} = \frac{1}{2}\widehat {AIP}\) (4).

Do \(MP,MB\) là hai tiếp tuyến cắt nhau

\( \Rightarrow KM\) là phân giác \(\widehat {IKP} \Rightarrow \widehat {MKP} = \frac{1}{2}\widehat {IKP}\) (5).

Từ (3), (4) và (5) suy ra \(\frac{1}{2}\widehat {AIP} + \frac{1}{2}\widehat {IKP} = \frac{1}{2}.180^\circ \Rightarrow \widehat {MIP} + \widehat {MKP} = 90^\circ \)

Xét tam giác \(IMK\) có: \(\widehat {MIP} + \widehat {MKP} = 90^\circ \Rightarrow \widehat {IMK} = 90^\circ \)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 9

Lớp 9 - Năm cuối cấp trung học cơ sở, chuẩn bị cho kỳ thi quan trọng. Những áp lực sẽ lớn nhưng hãy tin tưởng vào khả năng của bản thân và nỗ lực hết mình!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK