Trang chủ Lớp 8 SBT Toán 8 - Cánh diều Chương 1. Đa thức nhiều biến Bài 22 trang 17 SBT Toán 8 - Cánh diều: Phân tích mỗi đa thức sau thành nhân tử...

Bài 22 trang 17 SBT Toán 8 - Cánh diều: Phân tích mỗi đa thức sau thành nhân tử...

Ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm. Gợi ý giải bài 22 trang 17 sách bài tập (SBT) toán 8 - Cánh diều - Bài 4. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử. Phân tích mỗi đa thức sau thành nhân tử:...

Đề bài :

Phân tích mỗi đa thức sau thành nhân tử:

a) \(25{x^2} - \frac{1}{4}\)

b) \(36{x^2} + 12xy + {y^2}\)

c) \(\frac{{{x^3}}}{2} + 4\)

d) \(27{y^3} + 27{y^2} + 9y + 1\)

Hướng dẫn giải :

Ta có thể phân tích đa thức thành nhân tử bằng cách vận dụng trực tiếp hằng đẳng thức hoặc bằng cách vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung.

Lời giải chi tiết :

a) \(25{x^2} - \frac{1}{4} = {\left( {5x} \right)^2} - {\left( {\frac{1}{2}} \right)^2} = \left( {5x + \frac{1}{2}} \right)\left( {5x - \frac{1}{2}} \right)\)

b) \(36{x^2} + 12xy + {y^2} = {\left( {6x} \right)^2} + 2.6x.y + {y^2} = {\left( {6x + y} \right)^2}\)

c) \(\frac{{{x^3}}}{2} + 4 = \frac{1}{2}\left( {{x^3} + 8} \right) = \frac{1}{2}\left( {{x^3} + {2^3}} \right) = \frac{1}{2}\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\)

d) \(27{y^3} + 27{y^2} + 9y + 1 = {\left( {3y} \right)^3} + 3.{\left( {3y} \right)^2}.1 + 3.3y{.1^3} + {1^3} = {\left( {3y + 1} \right)^3}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK