Quan sát Hình 3 và cho biết:
a) Đường thẳng \(d\) có song song với BC hay không?
b) Bằng cách đếm số ô vuông, dự đoán xem các tỉ số \(\frac{{AM}}{{MB}},\frac{{AN}}{{NC}}\) có bằng nhau hay không?
Quan sát hình và trả lời câu hỏi.
a) Quan sát hình ta thấy \(d\parallel BC\).
b) Ta thấy:
Độ dài AM là 2 lần cạnh của một ô vuông.
Độ dài MB là cạnh của một ô vuông.
\( \Rightarrow \frac{{AM}}{{MB}} = \frac{2}{1} = 2\)
Độ dài AN là 2 lần đường chéo của một ô vuông.
Độ dài NC là độ dài đường chéo của một ô vuông.
\( \Rightarrow \frac{{AN}}{{NC}} = \frac{2}{1} = 2\)
Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).
Trong Hình 4, chứng tỏ rằng nếu \(MN\parallel BC\) thì \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\).
Dựa vào định lý Thales để chứng minh hai tỉ số bằng nhau.
Xét tam giác ABC với \(MN\parallel BC\), ta có \(\frac{{MB}}{{AB}} = \frac{{NC}}{{AC}}\) (định lý Thales).
Cho tam giác ABC có G là trọng tâm. Đường thẳng qua G song song với BC lần lượt cắt AB, AC tại M, N. Chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).
Sử dụng định lý Thales để chứng minh \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \).
Gọi AD là đường trung tuyến của tam giác ABC (D \(\in\) BC)
Vì G là trọng tâm của tam giác ABC nên AG = \(\frac{2}{3}\) AD hay \(\frac{AG}{AD} =\frac{2}{3}\) .
Xét tam giác ABD với MG // BD, ta có:
\( \frac {AM}{AB} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (1)
Tương tự, xét
tam giác ADC với GN // DC, ta có:
\( \frac {AN}{AC} = \frac{AG}{AD} =\frac{2}{3}\) (Định lí Thales) (2)
Từ (1) và (2) suy ra \( \frac{AM}{AB} = \frac{AN}{AC} = \frac{2}{3} \) (đpcm).
Trong Hình 7, cho AM = 1, MB = 2, AN = 1,5, NC = 3.
a) So sánh các tỉ số \(\frac{{AM}}{{MB}};\,\,\frac{{AN}}{{NC}}\).
b) Đường thẳng \(d\) (đi qua M, N) có song song với BC hay không?
a) Dựa vào số liệu đã cho, tính và so sánh các tỉ số.
b) Quan sát hình vẽ và cho biết đường thẳng \(d\) (đi qua M, N) có song song với BC hay không.
a) \(\frac{{AM}}{{MB}} = \frac{1}{2}\)
\(\frac{{AN}}{{AC}} = \frac{{1,5}}{3} = \frac{1}{2}\)
Vậy \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\).
b) Qua B kẻ đường thẳng song song với đường thẳng d, cắt AC tại C’.
Xét ∆ABC’ với MN // BC’, ta có:
\( \frac{AM}{MB}=\frac{AN}{NC′}\) (định lí Thalès).
Mà theo câu a, \(\frac{{AM}}{{MB}} = \frac{{AN}}{{NC}}\) nên ta có \(\frac{{AN}}{{NC}} = \frac{AN}{NC′}\)
Suy ra NC = NC’ hay C và C’ là hai điểm trùng nhau.
Do đó C nằm trên đường thẳng đi qua B và song song với đường thẳng d.
Vậy đường thẳng d (đi qua M, N) song song với BC.
Cho tam giác ABC vuông tại A có CA = 4, CB = 5. Giả sử M, N là hai điểm lần lượt nằm trên hai cạnh CA, CB sao cho CM = 1, CN = 1,25. Tính độ dài đoạn thẳng MN.
- Sử dụng định lý Thales đảo để chứng minh \(MN\parallel AB\).
- Chứng minh \(MN \bot AC\)
- Sử dụng định lý Pytago để tính độ dài cạnh MN.
Xét tam giác ABC có
\(\begin{array}{l}\frac{{CM}}{{CA}} = \frac{1}{4}\\\frac{{CN}}{{CB}} = \frac{{1,25}}{5} = \frac{1}{4}\\ \Rightarrow \frac{{CM}}{{CA}} = \frac{{CN}}{{CB}}\end{array}\)
\( \Rightarrow MN\parallel AB\) (Định lý Thales đảo)
Mà \(AB \bot AC\) nên \(MN \bot AC\) hay tam giác MNC vuông tại M
Xét tam giác MNC vuông tại M có: \(MC = 1,\,\,NC = 1,25\).
Theo định lý Pytago ta có:
\(\begin{array}{l}M{N^2} + M{C^2} = N{C^2}\\\,\,\,\,\,\,\,M{N^2} + {1^2} = 1,{25^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 1,{25^2} - {1^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,M{N^2} = 0,5625\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,MN = 0,75\end{array}\)
Vậy MN = 0,75.
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK