Cho tam giác ABC nhọn có H là trực tâm. Gọi M, N, P, Q lần lượt là trung điểm của các đoạn thẳng AB, BH, HC, CA. Chứng minh tứ giác MNPQ là hình chữ nhật.
Sử dụng định lý đường trung bình và dấu hiệu nhận biết của hình chữ nhật để chứng minh bài toán
Vì M, N lần lượt là trung điểm của các đoạn thẳng AB, BH nên ta có:
MN là đường trung bình tam giác ABH \( \Rightarrow MN//AH\) mà \(AH \bot BC\) nên \(MN \bot BC\) (1)
Vì P, Q lần lượt là trung điểm của các đoạn thẳng CH, AC nên ta có:
PQ là đường trung bình tam giác AHC \( \Rightarrow PQ//AH\) mà \(AH \bot BC\) nên \(QP \bot BC\) (2)
Vì P, N lần lượt là trung điểm của các đoạn thẳng CH, BH nên ta có:
PN là đường trung bình tam giác BHC \( \Rightarrow PN//BC\) mà \(AH \bot BC\) nên \(PN \bot AH\)(3)
Vì M, Q lần lượt là trung điểm của các đoạn thẳng AB, AC nên ta có:
MQ là đường trung bình tam giác ABC \( \Rightarrow MQ//BC\) mà \(AH \bot BC\) nên \(MQ \bot AH\)(4)
Từ (1), (2), (3), (4) ta có \(\widehat {MNP} = \widehat {NPQ} = \widehat {PQM} = \widehat {QMN} = 90^\circ \)
Vậy tứ giác MNPQ là hình chữ nhật (dhnb).
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK