Cho Hình 106. Chứng minh:
a) \(A{H^2} = AB.AI = AC.AK\)
b) \(\widehat {AIK} = \widehat {ACH}\)
a) Chứng minh \(\Delta AIH \backsim \Delta AHB\) và \(\Delta AKH \backsim \Delta AHC\) rồi suy ra các tỉ số đồng dạng.
b) Chứng minh \(\Delta ABC \backsim \Delta AKI\) và suy ra các góc tương ứng.
a) Xét tam giác AIH và tam giác AHB có:
\(\widehat {AIH} = \widehat {AHB} = 90^\circ ,\,\,\widehat A\) chung
\( \Rightarrow \Delta AIH \backsim \Delta AHB\) (g-g)
\( \Rightarrow \frac{{AI}}{{AH}} = \frac{{AH}}{{AB}} \Rightarrow A{H^2} = AI.AB\) (1)
Xét tam giác AKH và tam giác AHC có:
\(\widehat {AKH} = \widehat {AHC} = 90^\circ ,\,\,\widehat A\) chung
\( \Rightarrow \Delta AKH \backsim \Delta AHC\) (g-g)
\( \Rightarrow \frac{{AK}}{{AH}} = \frac{{AH}}{{AC}} \Rightarrow A{H^2} = AK.AC\,\,\left( 2 \right)\)
Từ (1) và (2) ta có: \(A{H^2} = AB.AI = AC.AK\)
b) Theo câu a ta có \(AB.AI = AC.AK \Rightarrow \frac{{AB}}{{AK}} = \frac{{AC}}{{AI}}\)
Xét tam giác ABC và tam giác AKI có:
\(\frac{{AB}}{{AK}} = \frac{{AC}}{{AI}},\,\,\widehat A\) chung
\( \Rightarrow \Delta ABC \backsim \Delta AKI\) (c-g-c)
\( \Rightarrow \widehat {AIK} = \widehat {ACB} \Rightarrow \widehat {AIK} = \widehat {ACH}\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK