Quan sát phương trình (ẩn \(x\)): \(4x + 12 = 0\), nêu nhận xét về bậc của đa thức ở vế trái của phương trình đó.
Xác định đa thức ở vế trái rồi xác định bậc của đa thức đó.
Đa thức ở vế trái là: \(4x + 12\)
Đa thức có bậc 1
Nêu hai ví dụ về phương trình bậc nhất ẩn \(x\)
Dựa vào định nghĩa về phương trình bậc nhất một ẩn để đưa ra hai ví dụ về phương trình bậc nhất ẩn \(x\).
Hai ví dụ về phương trình bậc nhất ẩn \(x\):
\(3x + 9 = 0\) và \(4x - \frac{1}{2} = 0\).
Kiểm tra xem \(x = - 3\) có là nghiệm của phương trình bậc nhất \(5x + 15 = 0\) hay không.
Tham khảo Ví dụ 2 Sách giáo khoa Toán 8 – Cánh diều.
Thay \(x = - 3\) vào phương trình ta có: \(5.\left( { - 3} \right) + 15 = - 15 + 15 = 0\)
Vậy \(x = - 3\) là nghiệm của phương trình \(5x + 15 = 0\).
Nêu quy tắc chuyển vế trong một đẳng thức số.
Nhớ lại quy tắc chuyển vế trong một đẳng thức số đã được học.
Quy tắc: Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức, ta phải đổi dấu số hạng đó: dấu "+” đổi thành dấu "−” và dấu "−” thành dấu "+”.
Xét đẳng thức số: \(2 + 3 - 4 = 9 - 10 + 2\). Tính giá trị mỗi vế của đẳng thức đó khi nhân cả hai vế với 5 và so sánh hai giá trị nhận được.
- Xác định vế trái, vế phải của đẳng thức.
- Nhân mỗi vế với 5 rồi so sánh hai kết quả.
Vế trái của đẳng thức: \(2 + 3 - 4\)
Khi nhân vế trái với 5 ta được: \(5.\left( {2 + 3 - 4} \right) = 5.1 = 5\)
Vế phải của đẳng thức: \(9 - 10 + 2\)
Khi nhân vế phải với 5 ta được: \(5.\left( {9 - 10 + 2} \right) = 5.1 = 5\)
Ta thấy sau khi nhân mỗi vế với 5, giá trị của hai vế bằng nhau.
Giải các phương trình:
a) \( - 6x - 15 = 0\);
b) \( - \frac{9}{2}x + 21 = 0.\)
Dựa vào các quy tắc chuyển vế và quy tắc nhân để giải phương trình.
a)
\(\begin{array}{l} - 6x - 15 = 0\\\,\,\,\,\,\,\,\,\, - 6x = 15\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 15:\left( { - 6} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = - \frac{5}{2}\end{array}\)
Vậy phương trình có nghiệm \(x = - \frac{5}{2}\)
b)
\(\begin{array}{l} - \frac{9}{2}x + 21 = 0\\\,\,\,\,\,\,\,\,\, - \frac{9}{2}x = - 21\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 21} \right):\left( { - \frac{9}{2}} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{{14}}{3}\end{array}\)
Vậy phương trình có nghiệm \(x = \frac{{14}}{3}\)
Giải phương trình:
\(2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\).
Dựa vào quy tắc chuyển vế, quy tắc nhân và quy tắc phá ngoặc để giải phương trình.
\(\begin{array}{l}2\left( {x - 0,7} \right) - 1,6 = 1,5 - \left( {x + 1,2} \right)\\\,\,\,\,\,2x - 1,4 - 1,6 = 1,5 - x - 1,2\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x - 3 = 0,3 - x\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2x + x = 0,3 + 3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3x = 3,3\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = 1,1.\end{array}\)
Vậy phương trình có nghiệm \(x = 1,1.\)
Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.
- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.
Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!
- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.
Nguồn : Sưu tậpCopyright © 2024 Giai BT SGK