Trang chủ Lớp 8 SGK Toán 8 - Cánh diều Chương 2 Phân thức đại số Giải mục 2 trang 31, 32, 33, 34 Toán 8 tập 1 - Cánh diều: Tính số thích hợp vào ?...

Giải mục 2 trang 31, 32, 33, 34 Toán 8 tập 1 - Cánh diều: Tính số thích hợp vào ?...

Vận dụng kiến thức giải HĐ3, LT3, HĐ4, LT4 , HĐ5, LT5 mục 2 trang 31, 32, 33, 34 SGK Toán 8 tập 1 - Cánh diều Bài 1. Phân thức đại số. Tính số thích hợp vào... Tính số thích hợp vào ?

Câu hỏi:

Hoạt động3

a) Tính số thích hợp vào ?: image; image

b) Hãy nhắc lại tính chất cơ bản của phân số.

Hướng dẫn giải :

Vận dụng quy tắc để hai phân số bằng nhau.

Lời giải chi tiết :

image

b) Tính chất cơ bản của phân số như sau:

- Nếu nhân cả tử và mẫu của một phân số với cùng một số tự nhiên khác 0 thì được một phân số mới bằng phân số đã cho:

\(\dfrac{a}{b} = \dfrac{{a.c}}{{b.c}}\left( {c \ne 0} \right)\)

- Nếu chia cả tử và mẫu của một phân số cho cùng một số tự nhiên khác 0 thì ta cũng được phân số mới bằng phân số đã cho.

\(\dfrac{a}{b} = \dfrac{{a:d}}{{b:d}}\left( {d \ne 0} \right)\)


Câu hỏi:

Luyện tập3

Dùng tính chất cơ bản của phân thức, hãy giải thích vì sao có thể viết: \(\dfrac{{3{\rm{x}} + y}}{y} = \dfrac{{3{\rm{x}}y + {y^2}}}{{{y^2}}}\)

Hướng dẫn giải :

Vận dụng các tính chất cơ bản của phân thức đại số để giải thích

Lời giải chi tiết :

\(\dfrac{{3{\rm{x}} + y}}{y} = \dfrac{{\left( {3{\rm{x}} + y} \right).y}}{{y.y}} = \dfrac{{3{\rm{x}}y + {y^2}}}{{{y^2}}}\) (y là đa thức khác đa thức 0)


Câu hỏi:

Hoạt động4

Cho phân thức: \(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}}\)

a) Tìm nhân tử chung của tử và mẫu

b) Tìm phân thức nhận được sau khi chia cả tử và mẫu cho nhân tử chung đó.

Hướng dẫn giải :

Dùng phương pháp phân tích các đơn thức thành tích của các thừa số để tìm nhân tử chung.

Lời giải chi tiết :

a) Ta có: \(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}} = \dfrac{{2{\rm{x}}.2{\rm{x}}y}}{{3y.2{\rm{x}}y}}\)

Nhân tử chung của cả tử và mẫu là: 2xy

b) Chia cả tử và mẫu của phân thức đã cho cho nhân tử chung 2xy ta được:

\(\dfrac{{4{{\rm{x}}^2}y}}{{6{\rm{x}}{y^2}}} = \dfrac{{\left( {4{{\rm{x}}^2}y} \right):2{\rm{x}}y}}{{\left( {6{\rm{x}}{y^2}} \right):2{\rm{x}}y}} = \dfrac{{2{\rm{x}}}}{{3y}}\)


Câu hỏi:

Luyện tập4

Rút gọn mỗi phân thức sau:

\(a)\dfrac{{8{{\rm{x}}^2} + 4{\rm{x}}}}{{1 - 4{{\rm{x}}^2}}}\) \(b)\dfrac{{{x^3} - x{y^2}}}{{2{{\rm{x}}^2} + 2{\rm{x}}y}}\)

Hướng dẫn giải :

Bước 1: Phân tử và mẫu thành nhân tử (nếu cần)

Bước 2: Tìm nhân tử chung của cả tử và mẫu rồi chia cả tử và mẫu cho nhân tử chung đó.

Lời giải chi tiết :

\(a)\dfrac{{8{{\rm{x}}^2} + 4{\rm{x}}}}{{1 - 4{{\rm{x}}^2}}} = \dfrac{{4{\rm{x}}.\left( {2{\rm{x}} + 1} \right)}}{{\left( {1 - 2{\rm{x}}} \right).\left( {1 + 2{\rm{x}}} \right)}} = \dfrac{{4{\rm{x}}}}{{1 - 2{\rm{x}}}}\)

\(b)\dfrac{{{x^3} - x{y^2}}}{{2{{\rm{x}}^2} + 2{\rm{x}}y}} = \dfrac{{x\left( {{x^2} - {y^2}} \right)}}{{2{\rm{x}}\left( {x + y} \right)}} = \dfrac{{x\left( {x + y} \right)\left( {x - y} \right)}}{{2{\rm{x}}\left( {x + y} \right)}} = \dfrac{{x - y}}{2}\)


Câu hỏi:

Hoạt động5

Cho hai phân thức \(\dfrac{1}{{{x^2}y}}\) và \(\dfrac{1}{{x{y^2}}}\)

a) Hãy nhân cả tử và mẫu của phân thức thứ nhất với y và nhân cả tử và mẫu của phân thức thứ hai với x.

b) Nhân xét gì về mẫu của hai phân thức thu được.

Hướng dẫn giải :

Thực hiện theo tính chất cơ bản của phân thức.

Lời giải chi tiết :

a) Ta có:

\(\dfrac{1}{{{x^2}y}} = \dfrac{{1.y}}{{{x^2}y.y}} = \dfrac{y}{{{x^2}{y^2}}}\)

\(\dfrac{1}{{x{y^2}}} = \dfrac{{1.x}}{{x{y^2}.x}} = \dfrac{x}{{{x^2}{y^2}}}\)

b) Mẫu của hai phân thức thu được giống nhau đều là: \({x^2}{y^2}\)


Câu hỏi:

Luyện tập5

Quy đồng mẫu thức các phân thức trong mỗi trường hợp sau:

a) \(\dfrac{5}{{2{{\rm{x}}^2}{y^3}}}\) và \(\dfrac{3}{{x{y^4}}}\)

b) \(\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}}\) và \(\dfrac{2}{{{x^2} - 25}}\)

Hướng dẫn giải :

Bước 1: Phân tích mẫu của mỗi phân thức rồi tìm MTC.

Bước 2: Tìm nhân tử phụ của mỗi phân thức (Bằng cách chia MTC cho từng mẫu)

Bước 3: Nhân cả tử và mẫu của mỗi phân thức đã cho với nhân tử phụ tương ứng.

Lời giải chi tiết :

a) MTC chọn là: \(2{{\rm{x}}^2}{y^4}\)

Nhân tử phụ của \(\dfrac{5}{{2{{\rm{x}}^2}{y^3}}}\) và \(\dfrac{3}{{x{y^4}}}\) lầm lượt là: y; 2x

Vậy: \(\begin{array}{l}\dfrac{5}{{2{{\rm{x}}^2}{y^3}}} = \dfrac{{5.y}}{{2{{\rm{x}}^2}{y^3}.y}} = \dfrac{{5y}}{{2{{\rm{x}}^2}{y^4}}}\\\dfrac{3}{{x{y^4}}} = \dfrac{{3.2{\rm{x}}}}{{x{y^4}.2{\rm{x}}}} = \dfrac{{6{\rm{x}}}}{{2{{\rm{x}}^2}{y^4}}}\end{array}\)

b) Ta có:

\(\begin{array}{l}\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}} = \dfrac{3}{{2{\rm{x}}\left( {x - 5} \right)}}\\\dfrac{2}{{{x^2} - 25}} = \dfrac{2}{{\left( {x - 5} \right)\left( {x + 5} \right)}}\end{array}\)

Chọn MTC là: \(2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)\)

Nhân tử phụ của các mẫu thức trên lần lượt là: \(\left( {x + 5} \right);2{\rm{x}}\)

Vậy:

\(\begin{array}{l}\dfrac{3}{{2{{\rm{x}}^2} - 10{\rm{x}}}} = \dfrac{3}{{2{\rm{x}}\left( {x - 5} \right)}} = \dfrac{{3\left( {x + 5} \right)}}{{2{\rm{x}}.\left( {x - 5} \right)\left( {x + 5} \right)}}\\\dfrac{2}{{{x^2} - 25}} = \dfrac{2}{{\left( {x - 5} \right)\left( {x + 5} \right)}} = \dfrac{{2.2{\rm{x}}}}{{2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)}} = \dfrac{{4{\rm{x}}}}{{2{\rm{x}}\left( {x - 5} \right)\left( {x + 5} \right)}}\end{array}\)

Dụng cụ học tập

Để học tốt môn Toán, chúng ta cần có sách giáo khoa, vở bài tập, bút chì, bút mực, thước kẻ, compa, máy tính cầm tay và giấy nháp.

Chia sẻ

Chia sẻ qua Facebook Chia sẻ

Sách Giáo Khoa: Cánh diều

- Bộ sách Cánh Diều được lựa chọn bởi phù hợp nhiều đối tượng học sinh. Mỗi cuốn sách giáo khoa Cánh Diều đều chứa đựng rất nhiều sáng tạo, tâm huyết, mang đầy tri thức và cảm xúc của các tác giả biên soạn.

Đọc sách

Bạn có biết?

Toán học, được ví như "ngôn ngữ của vũ trụ", không chỉ là môn học về số và hình học. Đó là lĩnh vực nghiên cứu trừu tượng về các cấu trúc, không gian và phép biến đổi, góp phần quan trọng vào việc giải mã các hiện tượng tự nhiên và phát triển công nghệ.

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự Lớp 8

Lớp 8 - Năm học đầy thách thức với những bài học khó hơn. Đừng lo lắng, hãy chăm chỉ học tập và luôn giữ tinh thần lạc quan!

- Học nhưng cũng chú ý sức khỏe nhé!. Chúc các bạn học tập tốt.

Nguồn : Sưu tập

Copyright © 2024 Giai BT SGK